Learn R Programming

⚠️There's a newer version (2.0-29) of this package.Take me there.

SuperLearner (version 2.0-26)

Super Learner Prediction

Description

Implements the super learner prediction method and contains a library of prediction algorithms to be used in the super learner.

Copy Link

Version

Install

install.packages('SuperLearner')

Monthly Downloads

7,860

Version

2.0-26

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Eric Polley

Last Published

December 10th, 2019

Functions in SuperLearner (2.0-26)

SuperLearner.CV.control

Control parameters for the cross validation steps in SuperLearner
CVFolds

Generate list of row numbers for each fold in the cross-validation
predict.SL.ksvm

Prediction for SL.ksvm
listWrappers

list all wrapper functions in SuperLearner
plot.CV.SuperLearner

Graphical display of the V-fold CV risk estimates
predict.SL.lda

Prediction wrapper for SL.lda
SuperLearner

Super Learner Prediction Function
create.Learner

Factory for learner wrappers
SL.xgboost

XGBoost SuperLearner wrapper
SL.speedglm

Wrapper for speedglm
SampleSplitSuperLearner

Super Learner Prediction Function
SL.qda

SL wrapper for MASS:qda
SL.ranger

SL wrapper for ranger
write.method.template

Method to estimate the coefficients for the super learner
predict.SL.ranger

Prediction wrapper for ranger random forests
create.SL.xgboost

Factory for XGBoost SL wrappers
predict.SL.bartMachine

bartMachine prediction
SL.lda

SL wrapper for MASS:lda
SL.lm

Wrapper for lm
predict.SL.glm

Prediction for SL.glm
predict.SL.glmnet

Prediction for an SL.glmnet object
predict.SL.extraTrees

extraTrees prediction on new data
predict.SL.kernelKnn

Prediction for SL.kernelKnn
predict.SuperLearner

Predict method for SuperLearner object
write.screen.template

screening algorithms for SuperLearner
SuperLearnerNews

Show the NEWS file for the SuperLearner package
write.SL.template

Wrapper functions for prediction algorithms in SuperLearner
predict.SL.qda

Prediction wrapper for SL.qda
predict.SL.lm

Prediction for SL.lm
trimLogit

truncated-probabilities logit transformation
SuperLearner.control

Control parameters for the SuperLearner
predict.SL.speedglm

Prediction for SL.speedglm
recombineCVSL

Recombine a CV.SuperLearner fit using a new metalearning method
SL.speedlm

Wrapper for speedlm
predict.SL.biglasso

Prediction wrapper for SL.biglasso
recombineSL

Recombine a SuperLearner fit using a new metalearning method
predict.SL.speedlm

Prediction for SL.speedlm
predict.SL.xgboost

XGBoost prediction on new data
summary.CV.SuperLearner

Summary Function for Cross-Validated Super Learner
SL.biglasso

SL wrapper for biglasso
SL.glmnet

Elastic net regression, including lasso and ridge
SL.extraTrees

extraTrees SuperLearner wrapper
SL.glm

Wrapper for glm
SL.bartMachine

Wrapper for bartMachine learner
SL.cforest

cforest party
CV.SuperLearner

Function to get V-fold cross-validated risk estimate for super learner
SL.kernelKnn

SL wrapper for KernelKNN
SL.ksvm

Wrapper for Kernlab's SVM algorithm