The function plot.PPE.BinBin
plots the distribution of
# S3 method for PPE.BinBin
plot(x,Type="Density",Param="PPE",Xlab.PE,main.PE,
ylab="density",Cex.Legend=1,Cex.Position="bottomright", lwd=3,linety=1,color=1,
Breaks=0.05, xlimits=c(0,1), …)
An object of class PPE.BinBin
. See PPE.BinBin
.
The type of plot that is produced. When Type="Freq"
, a histogram is produced. When Type="Density"
, a density is produced. Default Type="Density"
.
Parameter to be plotted: is either "PPE", "RPE" or "ICA"
The label of the X-axis when density plots or histograms are produced.
Title of the density plot or histogram.
The label of the Y-axis for the density plots. Default ylab="density"
.
The size of the legend. Default Cex.Legend=1
.
The position of the legend. Default Cex.Position="bottomright"
.
The line width for the density plot. Default lwd=3
.
The line types for the density. Default linety=1
.
The color of the density or histogram. Default color=1
.
The breaks for the histogram. Default Breaks=0.05
.
The limits for the X-axis. Default xlimits=c(0,1)
.
Other arguments to be passed.
An object of class PPE.BinBin
with components,
count variable
The vector of the PPE values.
The vector of the RPE values.
The vector of the
The vector of the
The vector of the entropies of
The vector of the entropies of
The vector of the mutual information of
An object of class data.frame
that contains the valid
In the continuous normal setting, surroagacy can be assessed by studying the association between the individual causal effects on ICA.ContCont
). In that setting, the Pearson correlation is the obvious measure of association.
When
The function PPE.BinBin
computes
Alonso A, Van der Elst W, Molenberghs G, Buyse M and Burzykowski T. (2016). An information-theoretic approach for the evaluation of surrogate endpoints based on causal inference.
Meyvisch P., Alonso A.,Van der Elst W, Molenberghs G. (2018). Assessing the predictive value of a binary surrogate for a binary true endpoint, based on the minimum probability of a prediction error.
# NOT RUN {
# Time consuming part
PANSS <- PPE.BinBin(pi1_1_=0.4215, pi0_1_=0.0538, pi1_0_=0.0538,
pi_1_1=0.5088, pi_1_0=0.0307,pi_0_1=0.0482,
Seed=1, M=2500)
plot(PANSS,Type="Freq",Param="RPE",color="grey",Breaks=0.05,xlimits=c(0,1),main="PANSS")
# }
Run the code above in your browser using DataLab