In a surrogate evaluation setting where both SPF.BinBin
). Alternatively, the maximum entropy distribution for vector MaxEntSPFBinBin
implements the latter approach.
Based on vector
MaxEntSPFBinBin(pi1_1_, pi1_0_, pi_1_1,
pi_1_0, pi0_1_, pi_0_1, Method="BFGS",
Fitted.ICA=NULL)
The maximum entropy frequency vector
The vector of values for
The vector of values for
The vector of values for
The vector of values for
The vector of values for
The vector of values for
The vector of values for
The vector of values for
The vector of values for
A scalar that contains the estimated value for
A scalar that contains the estimated value for
A scalar that contains the estimated value for
A scalar that contains the estimated value for
A scalar that contains the estimated value for
A scalar that contains the estimated value for
The maximum entropy frequency vector Method="BFGS"
and Method="CG"
, which implement the quasi-Newton BFGS (Broyden, Fletcher, Goldfarb, and Shanno) and the conjugent gradient (CG) methods (for details on these methods, see the help files of the optim()
function and the references theirin).
Alternatively, the ICA.BinBin
, ICA.BinBin.Grid.Full
, or ICA.BinBin.Grid.Sample
are executed) that is 'closest' to the vector Method="MD"
in the function call. Default Method="BFGS"
.
A fitted object of class ICA.BinBin
, ICA.BinBin.Grid.Full
, or ICA.BinBin.Grid.Sample
. Only required when Method="MD"
is used.
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
Alonso, A., & Van der Elst, W. (2015). A maximum-entropy approach for the evluation of surrogate endpoints based on causal inference.
ICA.BinBin
, ICA.BinBin.Grid.Sample
, ICA.BinBin.Grid.Full
, plot MaxEntSPF BinBin
# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)
# Sensitivity-based SPF
SPFSens <- SPF.BinBin(ICA)
# Maximum-entropy based SPF
SPFMaxEnt <- MaxEntSPFBinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)
# Explore maximum-entropy results
summary(SPFMaxEnt)
# Plot results
plot(x=SPFMaxEnt, SPF.Fit=SPFSens)
Run the code above in your browser using DataLab