Learn R Programming

SurrogateBMA (version 1.0)

Flexible Evaluation of Surrogate Markers with Bayesian Model Averaging

Description

Provides functions to estimate the proportion of treatment effect explained by the surrogate marker using a Bayesian Model Averaging approach. Duan and Parast (2023) .

Copy Link

Version

Install

install.packages('SurrogateBMA')

Monthly Downloads

112

Version

1.0

License

GPL (>= 2)

Maintainer

Yunshan Duan

Last Published

February 1st, 2024

Functions in SurrogateBMA (1.0)

R.m.theta

Calculates the R value given model and parameters
R.BMA.est

Calculates the proportion of treatment effect explained
post.model

Calculates the posterior probability of the candidate models
exampleData

Example data
gen.prior

Generates the default prior hyperparameters
cv.np

Calculate prodiction MSE for nonparametric method
rcpp_hello_world

Simple function using Rcpp
gpxi_int

Simple function using Rcpp
fpred.int

Function to be integrated when calculating the expected primary outcome
R.BMAonly

Calculates the proportion of treatment effect explained
SurrogateBMA-package

Flexible Evaluation of Surrogate Markers with Bayesian Model Averaging
pred.func

Calculate the expected primary outcome in the treatment group given the model and the parameters
post.theta

Generates posterior samples of the parameters