Learn R Programming

SurvRank (version 0.1)

risk_newdat: Main function of SurvRank.

Description

Main input function for SurvRank.

Usage

risk_newdat(dat_new, sel_names, dat_old, cv.out = 10, c.time = NA, detail = NA, plot = F, surv.tab = c(0.5), mcox = T)

Arguments

dat_new
a new data set that is not used for the model building but only for prediction
sel_names
the variables that were selected (from riskscore_fct) (see CVrankSurv_fct)
dat_old
the data set used to fit the survival model
cv.out
number of cross-validation folds for the prediction
c.time
as defined in UnoCsurvAUC time; a positive number restricting the upper limit of the time range under consideration
detail
TRUE do the prediction and Uno's C-Statistic computation for the models using 1:sel_names variables FALSE only save the statistics for the different cross validation folds
plot
TRUE do a plot of the survival curves FALSE no plot
surv.tab
Defaults to c(0.5). Calculates for selected features survival curves. surv.tab determines quantiles of predictions.
mcox
TRUE a cox model is fitted FALSE a Cox model with ridge penalty using cv.out cross-validation folds is fitted

Value

Output of the risk_newdat, basically a list containing the following elements
unocv
Matrix of censoring-adjusted C-statistic by Uno et al. for the different cross-validation folds and if detail=T as well for different number of variables
unoi
if detail=T Vector of censoring-adjusted C-statistic by Uno et al. for the different number of variables, if detail=FALSE it correspons to uno_new
rs
model prediction for the new data set
sfit.tab
survfit object according to surv.tab seperation
sfit.diff
surfdiff: Tests if there is a difference between two or more survival curves using the G-rho family of tests, or for a single curve against a known alternative
model
model output for dat_old and using the variables given by sel_names
uno_new
the censoring-adjusted C-statistic by Uno et al. using the prediction for dat_new
Additionally if plot is T, the survival curves given by sfit.tab are plotted

Details

details to follow

Examples

Run this code
## Simulating a survival data set
N=100; p=10; n=3
x=data.frame(matrix(rnorm(N*p),nrow=N,p))
beta=rnorm(n)
mx=matrix(rnorm(N*n),N,n)
fx=mx[,seq(n)]%*%beta/3
hx=exp(fx)
ty=rexp(N,hx)
tcens=1-rbinom(n=N,prob=.3,size=1)
y=Surv(ty,tcens)
data=list()
data$x<-x; data$y<-y
## CV object
out<-CVrankSurv_fct(data,2,3,3,fs.method="cox.rank")
## The variables selected from the \code{\link{riskscore_fct}}
selected<-riskscore_fct(out,data,list.t="weighted")$selnames
## Applying the risk_newdat function
x=data.frame(matrix(rnorm(N*p),nrow=N,p))
beta=rnorm(n)
mx=matrix(rnorm(N*n),N,n)
fx=mx[,seq(n)]%*%beta/3
hx=exp(fx)
ty=rexp(N,hx)
tcens=1-rbinom(n=N,prob=.3,size=1)
y=Surv(ty,tcens)
data_new=list()
data_new$x<-x; data_new$y<-y
risk<-risk_newdat(data_new,selected,data)

Run the code above in your browser using DataLab