## example with interval-censored Normal samples
n <- 500
prop.cens <- 0.35
mu <- c(0, 2)
sigma <- c(1, 1)
set.seed(2013)
## Sample 1:
LOD1 <- qnorm(0.35, mean = mu[1], sd = sigma[1])
x1 <- rnorm(n, mean = mu[1], sd = sigma[1])
min.value1 <- min(x1)
x1[x1 <= LOD1] <- LOD1
index.noncens1 <- which(x1 > LOD1)
left1 <- rep(NA, n)
left1[index.noncens1] <- x1[index.noncens1]
index.cens1 <- which(x1 <= LOD1)
index.interval1 <- index.cens1[index.cens1 >= 250]
left1[index.interval1] <- min.value1
s1 <- cbind(left1, x1)
## Sample 2:
LOD2 <- qnorm(0.35, mean = mu[2], sd = sigma[2])
x2 <- rnorm(n, mean = mu[2], sd = sigma[2])
min.value2 <- min(x2)
x2[x2 <= LOD2] <- LOD2
index.noncens2 <- which(x2 > LOD2)
left2 <- rep(NA, n)
left2[index.noncens2] <- x2[index.noncens2]
index.cens2 <- which(x2 <= LOD2)
index.interval2 <- index.cens2[index.cens2 >= 250]
left2[index.interval2] <- min.value2
s2 <- cbind(left2, x2)
## inference on distribution parameters and mean difference:
NormalMeanDiffCens(censdata1 = s1, censdata2 = s2)
Run the code above in your browser using DataLab