Learn R Programming

SurvRegCensCov (version 1.1)

SurvRegCensCov-package: Weibull Regression for a Right-Censored Endpoint with Censored Covariates

Description

The main function SurvRegCens of this package allows estimation of a Weibull Regression for a right-censored endpoint, one arbitrarily censored covariate, and an arbitrary number of non-censored covariates. Additional functions allow to switch between different parametrizations of Weibull regression used by different R functions (ConvertWeibull, WeibullReg, WeibullDiag), inference for the mean difference of two arbitrarily censored Normal samples (NormalMeanDiffCens), and estimation of canonical parameters from censored samples for several distributional assumptions (ParamSampleCens).

Arguments

Details

ll{ Package: SurvRegCensCov Type: Package Version: 1.1 Date: 2014-02-05 License: GPL (>=2) }

References

Hubeaux, S. (2013). Estimation from left- and/or interval-censored samples. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd. Hubeaux, S. (2013). Parametric Surival Regression Model with left- and/or interval-censored covariate. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd. Hubeaux, S. and Rufibach, K. (2014). SurvRegCensCov: Weibull Regression for a Right-Censored Endpoint with a Censored Covariate. Preprint, http://arxiv.org/abs/1402.0432. Lynn, H. S. (2001). Maximum likelihood inference for left-censored HIV RNA data. Stat. Med., 20, 33--45. Sattar, A., Sinha, S. K. and Morris, N. J. (2012). A Parametric Survival Model When a Covariate is Subject to Left-Censoring. Biometrics & Biostatistics, S3(2).

Examples

Run this code
# The main functions in this package are illustrated in their respective help files.

Run the code above in your browser using DataLab