50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

SymTS (version 1.0-2)

dCTS: PDF of CTS Distribution

Description

Evaluates the pdf for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.

Usage

dCTS(x, alpha, c = 1, ell = 1, mu = 0)

Arguments

x

Vector of points.

alpha

Number in [0,2)

c

Parameter c >0

ell

Parameter ell>0

mu

Location parameter, any real number

Author

Michael Grabchak and Lijuan Cao

Details

The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure R(dx) = c*delta_ell(dx) + c*delta_(-ell)(dx), where delta is the delta function. The Levy measure is M(dx) = c*ell^(alpha) *e^(-x/ell)*x^(-1-alpha) dx. The characteristic function is, for alpha not equal 0,1:

f(t) = exp( 2*c*gamma(-alpha)*(1+ell^2 t^2)^(alpha/2)*(cos(alpha*atan(ell*t))-1)) *e^(i*t*mu),

for alpha = 1 it is

f(t) = (1+ell^2 t^2)^c*exp(-2*c*ell*t*atan(ell*t)) *e^(i*t*mu),

and for alpha=0 it is

f(t) = (1+t^2 ell^2)^(-c) *e^(i*t*mu).

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

Examples

Run this code
x = (-10:10)/10
dCTS(x,.5)

Run the code above in your browser using DataLab