Learn R Programming

T2EQ (version 1.1)

T2EQ.dissolution.profiles.hoffelder: The $T^2$-test for equivalence for dissolution data

Description

The function T2EQ.dissolution.profiles.hoffelder() implements a variant of the $T^2$-test for equivalence analyses of highly variable dissolution profiles (see Hoffelder,2016). It is a multivariate two-sample equivalence procedure. Distance measure of the test is the Mahalanobis distance.

Usage

T2EQ.dissolution.profiles.hoffelder(X, Y, alpha = 0.05, print.results = TRUE)

Arguments

X
numeric data matrix of the first sample (REF). The rows of X contain the individual observations of the REF sample, the columns contain the variables/components of the multivariate sample. More precisely, the variables are the measured dissolution time points and the rows contain the individual dissolution profiles.
Y
numeric data matrix of the second sample (TEST). The rows of Y contain the individual observations of the TEST sample, the columns contain the variables/components of the multivariate sample. More precisely, the variables are the measured dissolution time points and the rows contain the individual dissolution profiles.
alpha
numeric (0<alpha
print.results
logical; if TRUE (default) summary statistics and test results are printed in the output. If NO no output is created

Value

a data frame; three columns containing the results of the test

Details

This function implements a variant of the $T^2$-test for equivalence suggested in Hoffelder (2016): The equivalence margin of the test is a compromise between the suggestions of Tsong et al. (1996) and EMA (2010) requirements. See Hoffelder (2016) for a discussion on that equivalence margin.

References

Hoffelder, T. (2016). Highly Variable Dissolution Profiles: Comparison of $T^2$-Test for Equivalence and $f_2$ Based Methods. pharmind, 78:4, 587-592. URL: http://www.ecv.de/suse_item.php?suseId=Z|pi|8430

Wellek, S. (2010), Testing Statistical Hypotheses of Equivalence and Noninferiority. Second edition. Boca Raton: Chapman & Hall/CRC.

Tsong, Y., Hammerstrom, T., Sathe, P., Shah, V.P. (1996). Statistical Assessment of Mean Differences between two Dissolution Data Sets. Drug Information Journal, 30:4, 1105-1112. URL: http://dx.doi.org/10.1177/009286159603000427

EMA (2010). Guidance on the Investigation of Bioequivalence. URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf

Examples

Run this code
## Not run: A recalculation of the results underlying Figure 1 in Hoffelder (2016) 
# can be done with the following code:## End(Not run)

data(ex_data_pharmind)
REF_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='REF'), ]
                  [c("Diss_10_min","Diss_20_min","Diss_30_min")])
TEST_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='TEST'), ]
                  [c("Diss_10_min","Diss_20_min","Diss_30_min")])
test_T2EQ.dissolution.profiles.hoffelder_pharmind <- 
      T2EQ.dissolution.profiles.hoffelder(X=REF_pharmind,Y=TEST_pharmind)

Run the code above in your browser using DataLab