Usage
designMatrices(modeltype = c("PCM", "RSM"), maxKi = NULL, resp = resp,
ndim = 1, A = NULL, B = NULL, Q = NULL, R = NULL, ...)
print.designMatrices(X, ...)
designMatrices.mfr(resp, formulaA = ~ item + item:step, facets = NULL,
constraint = c("cases", "items"), ndim = 1, Q=NULL, A=NULL, B=NULL ,
progress=FALSE)
.A.matrix(resp, formulaA = ~ item + item*step, facets = NULL,
constraint = c("cases", "items") )
rownames.design(X)
.A.PCM2( resp ) # generates ConQuest parametrization of partial credit model
.A.PCM3( resp ) # parametrization for A matrix in the dispersion model
Arguments
modeltype
Type of item response model. Until now, the
partial credit model (PCM
; 'item+item*step'
) and
the rating scale model (RSM
; 'item+step'
) is implemented.
maxKi
Maximum category per item
resp
Data frame of item responses
A
The design matrix for linking item category parameters
to generalized item parameters $\xi$.
B
The scoring matrix of item categories on $\theta$
dimensions.
Q
A loading matrix of items on dimensions
with number of rows equal the number
of items and the number of columns equals the
number of dimensions in the item response model.
R
This argument is not yet used
X
Object generated by designMatrices
. This argument is used in
print.designMatrices
and rownames.design
.
formulaA
An Rformula object for generating the A
design matrix
facets
A data frame with observed facets (DESCRIBE IT IN MORE DETAIL!)
constraint
Constraint in estimation: cases
assumes zero means
of trait distributions and items
a sum constraint of
zero of item parameters
progress
Display progress for creation of design matrices