Learn R Programming

TAM (version 0.04-43)

tam.ctt: Classical Test Theory Based Statistics

Description

This function computes some item statistics based on classical test theory.

Usage

tam.ctt(resp, wlescore=NULL, pvscores=NULL, group=NULL , progress=TRUE)

Arguments

resp
A data frame with unscored or scored item responses
wlescore
A vector with person parameter estimates, e.g. weighted likelihood estimates obtained from tam.wle
pvscores
A matrix with plausible values, e.g. obtained from tam.pv
group
Vector of group identifiers if descriptive statistics shall be groupwise calculated
progress
Display progress?

Value

  • A data frame with following columns:
  • indexIndex variable in this data frame
  • groupGroup identifier
  • itemnoItem number
  • itemItem
  • NNumber of students responding to this item
  • CategCategory label
  • AbsFreqAbsolute frequency of category
  • RelFreqRelative frequency of category
  • rpb.WLEPoint biserial correlation of an item category and the WLE
  • M.WLEMean of the WLE of students in this item category
  • SD.WLEStandard deviation of the WLE of students in this item category
  • rpb.PVPoint biserial correlation of an item category and the PV
  • M.PVMean of the PV of students in this item category
  • SD.PVStandard deviation of the PV of students in this item category

Examples

Run this code
#################################################
# Example data.mc
data(data.mc)
# estimate Rasch model for scored data.mc data
mod <- tam.mml( resp=data.mc$scored )
# estimate WLE
w1 <- tam.wle( mod )
# estimate plausible values
set.seed(789)
p1 <- tam.pv( mod , ntheta=500 , normal.approx=TRUE )$pv

# CTT results for raw data
stat1 <- tam.ctt( resp=data.mc$raw , wlescore=w1$theta , pvscores=p1[,-1] )

# CTT results for scored data
stat2 <- tam.ctt( resp=data.mc$scored , wlescore=w1$theta , pvscores=p1[,-1] )

# descriptive statistics for different groups
# define group identifier
group <- c( rep(1,70) , rep(2,73) )
stat3 <- tam.ctt( resp=data.mc$raw , wlescore=w1$theta , pvscores=p1[,-1] , group=group)

Run the code above in your browser using DataLab