Learn R Programming

TAM (version 0.04-43)

tam.pv: Plausible Value Imputation

Description

Plausible value imputation for objects of the classes tam and tam.mml (Adams & Wu, 2007).

Usage

tam.pv(tamobj, nplausible = 10, ntheta = 2000, normal.approx = FALSE, 
    samp.regr = FALSE , np.adj=4 )

Arguments

tamobj
Object of class tam or tam.mml
nplausible
Number of plausible values to be drawn
ntheta
Number of ability nodes for plausible value imputation. Note that in this function ability nodes are simulated for the whole sample, not for every person (contrary to the software ConQuest).
normal.approx
Should individual posterior distributions be approximated by a normal distribution? The default is TRUE. In this case, the number of ability nodes ntheta can be substantially smaller than 2000, say 200 or 500.
samp.regr
Should regression coefficients be fixed in the imputation or also sampled from their posterior distribution? The default is FALSE.
np.adj
This parameter defines the spread of the random theta values for drawing plausible values when normal.approx=FALSE. If $s_{EAP}$ denotes the standard deviation of the posterior distribution of theta (in the one-dimensional c
...
Further arguments to be passed

Value

  • A list with following entries:
  • pvA data frame containing a person identifier (pid) and plausible values denoted by PVxx.Dimyy which is the xxth plausible value of dimension yy.
  • hwtIndividual posterior distribution evaluated at the ability grid theta
  • hwt1Cumulated individual posterior distribution
  • thetaSimulated ability nodes

References

Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model. A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.): Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 55-76). New York: Springer.

Examples

Run this code
data(sim.rasch)
# estimate Rasch model
mod <- tam.mml(sim.rasch)
# draw 5 plausible values (without a normality
# assumption of the posterior) and 2000 ability nodes
pv1 <- tam.pv( mod , nplausible=5 , ntheta=2000 )

Run the code above in your browser using DataLab