Learn R Programming

TAM (version 0.04-43)

tam.wle: Weighted Likelihood Estimation and Maximum Likelihood Estimation of Person Parameters

Description

Compute weighted likelihood estimator for objects of classes tam, tam.mml and tam.jml, respectively.

Usage

tam.wle(tamobj, ...)
tam.mml.wle(tamobj, WLE=TRUE, adj=0.3, Msteps=20, convM=1e-04)
tam.jml.WLE(tamobj, resp, resp.ind, A, B, nstud, nitems, maxK, convM, 
    PersonScores, theta, xsi, Msteps, WLE=FALSE)

Arguments

tamobj
An object generated by tam.mml or tam.jml
WLE
A logical which indicates if the weighted likelihood estimate (WLE, WLE=TRUE) or the maximum likelihood estimate (MLE, WLE=FALSE) should be used.
adj
Adjustment in WLE estimation for extreme scores (i.e. all or none items were correctly solved)
Msteps
Maximum number of iterations
convM
Convergence criterion
resp
Data frame with item responses (only for tam.jml.WLE)
resp.ind
Data frame with response indicators (only for tam.jml.WLE)
A
Design matrix $A$ (only for tam.jml.WLE)
B
Design matrix $B$ (only for tam.jml.WLE)
nstud
...(only for tam.jml.WLE)
nitems
...(only for tam.jml.WLE)
maxK
...(only for tam.jml.WLE)
PersonScores
...(only for tam.jml.WLE)
theta
...(only for tam.jml.WLE)
xsi
...(only for tam.jml.WLE)
...
Further arguments to be passed

Value

  • For tam.wle.mml it is a data frame with following columns:
  • pidPerson identifier
  • PersonScoresScore of each person
  • PersonMaxMaximum score of each person
  • thetaWeighted likelihood estimate (WLE) or MLE
  • errorStandard error of the WLE or MLE
  • WLE.relWLE reliability (same value for all persons)
  • For tam.jml.WLE it is a list with following entries:
  • thetaWeighted likelihood estimate (WLE) or MLE
  • errorWLEStandard error of the WLE or MLE
  • meanChangeWLEMean change between updated and previous ability estimates from last iteration

References

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.

Examples

Run this code
data(sim.rasch)
# estimate Rasch model
mod1 <- tam.mml(resp=sim.rasch) 
# WLE estimation
wle1 <- tam.wle( mod1 )
## ----
## WLE Reliability = 0.894

Run the code above in your browser using DataLab