#############################################################################
# SIMULATED EXAMPLE 1: Simulated data Rasch model
#############################################################################
#*** simulate data
library(sirt)
set.seed(9875)
N <- 2000
I <- 20
b <- sample( seq( -2 , 2 , length=I ) )
a <- rep( 1, I )
# create some misfitting items
a[c(1,3)] <- c(.5 , 1.5 )
# simulate data
dat <- sirt::sim.raschtype( rnorm(N) , b=b , fixed.a=a )
#*** estimate Rasch model
mod1 <- tam.mml(resp=dat)
#--- item fit from "msq.itemfit" function
fit1 <- msq.itemfit(mod1)
summary( fit1 )
#--- item fit using simulation in "tam.fit"
fit0 <- tam.fit( mod1 )
summary(fit0)
# define some item groups for fit assessment
fitindices <- rep( c(1,2) , each=10)
fit2 <- msq.itemfit( mod1 , fitindices )
summary(fit2)
Run the code above in your browser using DataLab