#############################################################################
# EXAMPLE 1: Multiple choice data data.mc
#############################################################################
data(data.mc)
# estimate Rasch model for scored data.mc data
mod <- tam.mml( resp=data.mc$scored )
# estimate WLE
w1 <- tam.wle( mod )
# estimate plausible values
set.seed(789)
p1 <- tam.pv( mod , ntheta=500 , normal.approx=TRUE )$pv
# CTT results for raw data
stat1 <- tam.ctt( resp=data.mc$raw , wlescore=w1$theta , pvscores=p1[,-1] )
stat1a <- tam.ctt2( resp=data.mc$raw , wlescore=w1$theta ) # faster
stat1b <- tam.ctt2( resp=data.mc$raw ) # only frequencies
stat1c <- tam.ctt3( resp=data.mc$raw , wlescore=w1$theta ) # faster
# plot empirical item response curves
plotctt( resp=data.mc$raw , theta = w1$theta , Ncuts =5 , ask=TRUE)
# use graphics for plot
plotctt( resp=data.mc$raw , theta = w1$theta , Ncuts =5 , ask=TRUE , package="graphics")
# change colors
col.list <- c( "darkred" , "darkslateblue" , "springgreen4" , "darkorange" ,
"hotpink4" , "navy" )
plotctt( resp=data.mc$raw , theta = w1$theta , Ncuts =5 , ask=TRUE ,
package="graphics" , col.list = col.list )
# CTT results for scored data
stat2 <- tam.ctt( resp=data.mc$scored , wlescore=w1$theta , pvscores=p1[,-1] )
# descriptive statistics for different groups
# define group identifier
group <- c( rep(1,70) , rep(2,73) )
stat3 <- tam.ctt( resp=data.mc$raw , wlescore=w1$theta , pvscores=p1[,-1] , group=group)
stat3a <- tam.ctt2( resp=data.mc$raw , wlescore=w1$theta , group=group)
Run the code above in your browser using DataLab