Learn R Programming

TAM (version 1.6-0)

tam.pv: Plausible Value Imputation

Description

Plausible value imputation for objects of the classes tam and tam.mml (Adams & Wu, 2007). For converting generated plausible values into a list of multiply imputed datasets see tampv2datalist and the Examples 2 and 3 of this function.

Usage

tam.pv(tamobj, nplausible = 10, ntheta = 2000, normal.approx = FALSE, 
    samp.regr = FALSE, theta.model=FALSE, np.adj=8 )

Arguments

tamobj
Object of class tam or tam.mml
nplausible
Number of plausible values to be drawn
ntheta
Number of ability nodes for plausible value imputation. Note that in this function ability nodes are simulated for the whole sample, not for every person (contrary to the software ConQuest).
normal.approx
An optional logical indicating whether the individual posterior distributions should be approximated by a normal distribution? The default is FALSE. In the case normal.approx=TRUE (normal distribution approxim
samp.regr
An optional logical indicating whether regression coefficients should be fixed in the plausible value imputation or also sampled from their posterior distribution? The default is FALSE. Sampled regression coefficients are
theta.model
Logical indicating whether the theta grid from the tamobj object should be used for plausible value imputation. In case of normal.approx=TRUE, this should be sufficient in many applications.
np.adj
This parameter defines the "spread" of the random theta values for drawing plausible values when normal.approx=FALSE. If $s_{EAP}$ denotes the standard deviation of the posterior distribution of theta (in the one-dimensional
...
Further arguments to be passed

Value

  • A list with following entries:
  • pvA data frame containing a person identifier (pid) and plausible values denoted by PVxx.Dimyy which is the xxth plausible value of dimension yy.
  • hwtIndividual posterior distribution evaluated at the ability grid theta
  • hwt1Cumulated individual posterior distribution
  • thetaSimulated ability nodes

References

Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model. A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.): Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 55-76). New York: Springer.

See Also

See tam.latreg for further examples of fitting latent regression models and drawing plausible values from models which provides asn individual likelihood as an input.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Dichotomous unidimensional data sim.rasch
#############################################################################

data(sim.rasch)
resp <- sim.rasch[ 1:500 , 1:15 ]  # select subsample of students and items

# estimate Rasch model
mod <- tam.mml(resp)

# draw 5 plausible values without a normality
# assumption of the posterior and 2000 ability nodes
pv1a <- tam.pv( mod , nplausible=5 , ntheta=2000 )

# draw 5 plausible values with a normality
# assumption of the posterior and 500 ability nodes
pv1b <- tam.pv( mod , nplausible=5 , ntheta=500 , normal.approx=TRUE )

# distribution of first plausible value from imputation pv1
hist(pv1a$pv$PV1.Dim1 )
# boxplot of all plausible values from imputation pv2
boxplot(pv1b$pv[ , 2:6 ] )

#############################################################################
# EXAMPLE 2: Unidimensional plausible value imputation with
#            background variables; dataset data.pisaRead from sirt package
#############################################################################

data(data.pisaRead, package="sirt")
dat <- data.pisaRead$data
  ##   > colnames(dat)
  ##    [1] "idstud"   "idschool" "female"   "hisei"    "migra"    "R432Q01" 
  ##    [7] "R432Q05"  "R432Q06"  "R456Q01"  "R456Q02"  "R456Q06"  "R460Q01" 
  ##   [13] "R460Q05"  "R460Q06"  "R466Q02"  "R466Q03"  "R466Q06" 

## Note that reading items have variable names starting with R4

# estimate 2PL model without covariates
items <- grep("R4" , colnames(dat) )	# select test items from data
mod2a <- tam.mml.2pl( resp=dat[,items] )
summary(mod2a)

# fix item parameters for plausible value imputation
   # fix item intercepts by defining xsi.fixed
xsi0 <- mod2a$xsi$xsi
xsi.fixed <- cbind( seq(1,length(xsi0)) , xsi0 )
   # fix item slopes using mod2$B
# matrix of latent regressors female, hisei and migra
Y <- dat[ , c("female" , "hisei" , "migra") ]
mod2b <- tam.mml( resp=dat[,items] , B=mod2a$B , xsi.fixed=xsi.fixed , Y=Y)

# plausible value imputation with normality assumption
# and ignoring uncertainty about regression coefficients
#    -> the default is samp.regr=FALSE
pv2c <- tam.pv( mod2b , nplausible=10 , ntheta=500 , normal.approx=TRUE )
# sampling of regression coefficients
pv2d <- tam.pv( mod2b , nplausible=10 , ntheta=500 , samp.regr=TRUE)
# sampling of regression coefficients, normal approximation using the
# theta grid from the model
pv2e <- tam.pv( mod2b , samp.regr=TRUE , theta.model=TRUE , normal.approx=TRUE)

#--- create list of multiply imputed datasets with plausible values
# define dataset with covariates to be matched
Y <- dat[ , c("idstud" , "idschool" , "female" , "hisei" , "migra") ]
# define plausible value names
pvnames <- c("PVREAD")
# create list of imputed datasets
datlist1 <- tampv2datalist( pv2e , pvnames = pvnames , Y=Y , Y.pid="idstud")
str(datlist1)

# create a matrix of covariates with different set of students than in pv2e
Y1 <- Y[ seq( 1 , 600 , 2 ) , ]
# create list of multiply imputed datasets
datlist2 <- tampv2datalist( pv2e , pvnames = c("PVREAD"), Y=Y1 , Y.pid="idstud")

#--- fit some models in lavaan and semTools
library(lavaan)
library(semTools)

#*** Model 1: Linear regression
lavmodel <- "
   PVREAD ~ migra + hisei
   PVREAD ~~ PVREAD
        "
mod1 <- semTools::lavaan.mi( lavmodel , data = datlist1 , m=0)        
summary(mod1 , standardized=TRUE, rsquare=TRUE)

# apply lavaan for third imputed dataset
mod1a <- lavaan::lavaan( lavmodel , data = datlist1[[3]] )        
summary(mod1a , standardized=TRUE, rsquare=TRUE)

# compare with mod1 by looping over all datasets
mod1b <- lapply( datlist1 , FUN = function(dat0){
    mod1a <- lavaan( lavmodel , data = dat0 )        
    coef( mod1a)
        } )
mod1b        
mod1b <- matrix( unlist( mod1b ) , ncol= length( coef(mod1)) , byrow=TRUE )
mod1b
round( colMeans(mod1b) , 3 )
coef(mod1)   # -> results coincide

#*** Model 2: Path model
lavmodel <- "
   PVREAD ~ migra + hisei
   hisei ~ migra
   PVREAD ~~ PVREAD
   hisei ~~ hisei
        "
mod2 <- semTools::lavaan.mi( lavmodel , data = datlist1 )        
summary(mod2 , standardized=TRUE, rsquare=TRUE)
# fit statistics
inspect( mod2 , what="fit")

#--- using mice
library(mice)
library(miceadds)
# convert datalist into a mids object
mids1 <- miceadds::datalist2mids( datlist1 )
# fit linear regression
mod1c <- with( mids1 , lm( PVREAD ~ migra + hisei ) )
summary( pool(mod1c) )

#############################################################################
# SIMULATED EXAMPLE 3: Multidimensional plausible value imputation
#############################################################################

# (1) simulate some data
set.seed(6778)
library(mvtnorm)
N <- 1000      
Y <- cbind( rnorm( N ) , rnorm(N) )
theta <- rmvnorm( N,mean=c(0,0), sigma=matrix( c(1,.5,.5,1) , 2 , 2 ))
theta[,1] <- theta[,1] + .4 * Y[,1] + .2 * Y[,2]  # latent regression model
theta[,2] <- theta[,2] + .8 * Y[,1] + .5 * Y[,2]  # latent regression model
I <- 20
p1 <- plogis( outer( theta[,1] , seq( -2 , 2 , len=I ) , "-" ) )
resp1 <- 1 * ( p1 > matrix( runif( N*I ) , nrow=N , ncol=I ) )
p1 <- plogis( outer( theta[,2] , seq( -2 , 2 , len=I ) , "-" ) )
resp2 <- 1 * ( p1 > matrix( runif( N*I ) , nrow=N , ncol=I ) )
resp <- cbind(resp1,resp2)
colnames(resp) <- paste("I" , 1:(2*I), sep="")
  
# (2) define loading Matrix
Q <- array( 0 , dim = c( 2*I , 2 ))
Q[cbind(1:(2*I), c( rep(1,I) , rep(2,I) ))] <- 1

# (3) fit latent regression model
mod <- tam.mml( resp=resp , Y=Y , Q=Q , control=list(maxiter=5) )

# (4) draw plausible values with normal approximation using the orginal theta grid
pv1 <- tam.pv( mod , normal.approx=TRUE , theta.mod = TRUE )

# (5) convert plausible values to list of imputed datasets
Y1 <- data.frame(Y)
colnames(Y1) <- paste0("Y",1:2)
pvnames <- c("PVFA","PVFB")
# create list of imputed datasets
datlist1 <- tampv2datalist( pv1 , pvnames = pvnames , Y=Y1 )
str(datlist1)

# (6) apply statistical models
library(semTools)
# define linear regression
lavmodel <- "
   PVFA ~ Y1 + Y2
   PVFA ~~ PVFA
        "
mod1 <- semTools::lavaan.mi( lavmodel , data = datlist1 )        
summary(mod1 , standardized=TRUE, rsquare=TRUE)


#############################################################################
# SIMULATED EXAMPLE 4: Plausible value imputation with measurement 
#                      errors in covariates
#############################################################################

library(sirt)
set.seed(7756)
N <- 2000    # number of persons
I <- 10     # number of items

# simulate covariates
X <- mvrnorm( N , mu=c(0,0) , Sigma = matrix( c(1,.5,.5,1) ,2 ,2 ) )
colnames(X) <- paste0("X",1:2)
# second covariate with measurement error with variance var.err
var.err <- .3
X.err <- X
X.err[,2] <-X[,2] + rnorm(N, sd = sqrt(var.err) )
# simulate theta
theta <- .5*X[,1] + .4*X[,2] + rnorm( N , sd = .5 )
# simulate item responses
itemdiff <- seq( -2 , 2 , length=I)  # item difficulties
dat <- sirt::sim.raschtype( theta , b = itemdiff )

#***********************
#*** Model 0: Regression model with true variables
mod0 <- lm( theta ~ X )
summary(mod0)

#***********************
#*** Model 1: latent regression model with true covariates X
xsi.fixed <- cbind( 1:I , itemdiff )
mod1 <- tam.mml( dat , xsi.fixed=xsi.fixed , Y=X)
summary(mod1)

# draw plausible values
res1a <- tam.pv( mod1 , normal.approx=TRUE , ntheta=200 , samp.regr=TRUE)
# create list of multiply imputed datasets
library(miceadds)
datlist1a <- tampv2datalist( res1a , Y=X ) 
imp1a <- miceadds::datalist2mids( datlist1a )

# fit linear model
# linear regression with measurement errors in X
lavmodel <- "
   PV.Dim1 ~ X1 + X2true
   X2true =~ 1*X2
   X2 ~~ 0.3*X2  # = var.err
   PV.Dim1 ~~ PV.Dim1
   X2true ~~ X2true
        "              
mod1a <- semTools::lavaan.mi( lavmodel , datlist1a)
summary(mod1a , standardized=TRUE, rsquare=TRUE)

#***********************
#*** Model 2: latent regression model with error-prone covariates X.err
mod2 <- tam.mml( dat , xsi.fixed=xsi.fixed , Y=X.err)
summary(mod2)

#***********************
#*** Model 3: Adjustment of covariates

cov.X.err <- cov( X.err )
# matrix of variance of measurement errors
measerr <- diag( c(0,var.err) )
# true covariance matrix
cov.X <- cov.X.err - measerr
# mean of X.err
mu <- colMeans(X.err)
muM <- matrix( mu , nrow=nrow(X.err) , ncol=ncol(X.err) , byrow=TRUE)
# reliability matrix
W <- solve( cov.X.err ) %*% cov.X
ident <- diag(2)
# adjusted scores of X
X.adj <- ( X.err - muM ) %*% W   + muM %*% ( ident - W )

# fit latent regression model
mod3 <- tam.mml( dat , xsi.fixed=xsi.fixed , Y=X.adj)
summary(mod3)

# draw plausible values
res3a <- tam.pv( mod3 , normal.approx=TRUE , ntheta=200 , samp.regr=TRUE)

# create list of multiply imputed datasets
library(semTools)

#*** PV dataset 1
# datalist with error-prone covariates
datlist3a <- tampv2datalist( res3a , Y=X.err ) 
# datalist with adjusted covariates
datlist3b <- tampv2datalist( res3a , Y=X.adj ) 

# linear regression with measurement errors in X
lavmodel <- "
   PV.Dim1 ~ X1 + X2true
   X2true =~ 1*X2
   X2 ~~ 0.3*X2  # = var.err
   PV.Dim1 ~~ PV.Dim1
   X2true ~~ X2true
        "              
mod3a <- semTools::lavaan.mi( lavmodel , datlist3a)
summary(mod3a , standardized=TRUE, rsquare=TRUE)

lavmodel <- "
   PV.Dim1 ~ X1 + X2
   PV.Dim1 ~~ PV.Dim1
        "     
mod3b <- semTools::lavaan.mi( lavmodel , datlist3b)
summary(mod3b , standardized=TRUE, rsquare=TRUE)
# => mod3b leads to the correct estimate.

#*********************************************
# plausible value imputation for abilities and error-prone
# covariates using the mice package

library(mice)
library(miceadds)

# creating the likelihood for plausible value for abilities
mod11 <- tam.mml( dat , xsi.fixed = xsi.fixed )
likePV <- IRT.likelihood(mod11)
# creating the likelihood for error-prone covariate X2
lavmodel <- "
  X2true =~ 1*X2
  X2 ~~ 0.3*X2
    "
mod12 <- lavaan::cfa( lavmodel , data = as.data.frame(X.err) )
summary(mod12)
likeX2 <- IRTLikelihood.cfa( data= X.err , cfaobj=mod12)
str(likeX2)

#-- create data input for mice package
data <- data.frame( "PVA" = NA , "X1" = X[,1] , "X2" = NA  ) 
vars <- colnames(data)
V <- length(vars)
predictorMatrix <- 1 - diag(V)
rownames(predictorMatrix) <- colnames(predictorMatrix) <- vars
imputationMethod <- rep("norm" , V )
names(imputationMethod) <- vars
imputationMethod[c("PVA","X2")] <- "2l.plausible.values"

#-- create argument lists for plausible value imputation
# likelihood and theta grid of plausible value derived from IRT model
like <- list( "PVA" = likePV  , "X2" = likeX2 )
theta <- list( "PVA" = attr(likePV,"theta") ,
                "X2" = attr(likeX2 , "theta") )                     
#-- initial imputations
data.init <- data
data.init$PVA <- mod11$person$EAP
data.init$X2 <- X.err[,"X2"]

#-- imputation using the mice and miceadds package
imp1 <- mice::mice( as.matrix(data) , predictorMatrix = predictorMatrix , m = 4, maxit = 6 ,  
             imputationMethod = imputationMethod ,  allow.na = TRUE ,
             theta=theta , like=like , data.init=data.init )
summary(imp1)

# compute linear regression
mod4a <- with( imp1 , lm( PVA ~ X1 + X2 ) )
summary( pool(mod4a) )

Run the code above in your browser using DataLab