#############################################################################
# EXAMPLE 1: Examples dichotomous data data.read
#############################################################################
library(sirt)
data(data.read,package="sirt")
dat <- data.read
#*********************************************************************
#*** Model 1: 2PL estimation with some fixed parameters and
# equality constraints
tammodel <- "LAVAAN MODEL:
F2 =~ C1__C2 + 1.3*C3 + C4
F1 =~ A1__B1
# fixed loading of 1.4 for item B2
F1 =~ 1.4*B2
F1 =~ B3
F1 ~~ F1
F2 ~~ F2
F1 ~~ F2
B1 | 1.23*t1 ; A3 | 0.679*t1
A2 | a*t1 ; C2 | a*t1 ; C4 | a*t1
C3 | x1*t1 ; C1 | x1*t1
ITEM TYPE:
A1__A3 (Rasch) ;
A4 (2PL) ;
B1__C4 (Rasch) ;
"
# process model
out <- tamaanify( tammodel , resp=dat)
# inspect some output
out$method # used TAM function
out$lavpartable # lavaan parameter table
#*********************************************************************
#*** Model 2: Latent class analysis with three classes
tammodel <- "ANALYSIS:
TYPE=LCA;
NCLASSES(3); # 3 classes
NSTARTS(5,20); # 5 random starts with 20 iterations
LAVAAN MODEL:
F =~ A1__C4
"
# process syntax
out <- tamaanify( tammodel , resp=dat)
str(out$E) # E design matrix for estimation with tam.mml.3pl function
#*********************************************************************
#*** Model 3: Linear constraints for item intercepts and item loadings
tammodel <- "
LAVAAN MODEL:
F =~ lam1__lam10*A1__C2
F ~~ F
A1 | a1*t1
A2 | a2*t1
A3 | a3*t1
A4 | a4*t1
B1 | b1*t1
B2 | b2*t1
B3 | b3*t1
C1 | t1
MODEL CONSTRAINT:
# defined parameters
# only linear combinations are permitted
b2 == 1.3*b1 + (-0.6)*b3
a1 == q1
a2 == q2 + t
a3 == q1 + 2*t
a4 == q2 + 3*t
# linear constraints for loadings
lam2 == 1.1*lam1
lam3 == 0.9*lam1 + (-.1)*lam0
lam8 == lam0
lam9 == lam0
"
# parse syntax
mod1 <- tamaanify( tammodel , resp=dat)
mod1$A # design matrix A for intercepts
mod1$L[,1,] # design matrix L for loadings
#############################################################################
# EXAMPLE 2: Examples polytomous data data.Students
#############################################################################
library(CDM)
data( data.Students , package="CDM")
dat <- data.Students[,3:13]
#*********************************************************************
#*** Model 1: Two-dimensional generalized partial credit model
tammodel <- "LAVAAN MODEL:
FA =~ act1__act5
FS =~ sc1__sc4
FA ~~ 1*FA
FS ~~ 1*FS
FA ~~ FS
act1__act3 | t1
sc2 | t2
"
out <- tamaanify( tammodel , resp=dat)
out$A # design matrix for item intercepts
out$Q # loading matrix for items
#*********************************************************************
#*** Model 2: Linear constraints
# In the following syntax, linear equations for multiple constraints
# go over multiple lines.
tammodel <- "LAVAAN MODEL:
F =~ a1__a5*act1__act5
F ~~ F
MODEL CONSTRAINT:
a1 == delta +
tau1
a2 == delta
a3 == delta + z1
a4 == 1.1*delta +
2*tau1
+ (-0.2)*z1
"
# tamaanify model
res <- tamaanify( tammodel , dat )
res$MODELCONSTRAINT.dfr
res$modelconstraint.loading
Run the code above in your browser using DataLab