## Not run:
# library(lavaan)
#
# #############################################################################
# # EXAMPLE 1: Two-dimensional confirmatory factor analysis data.Students
# #############################################################################
#
# data(data.Students, package="CDM")
# # select variables
# vars <- scan(nlines=1 , what="character")
# sc1 sc2 sc3 sc4 mj1 mj2 mj3 mj4
# dat <- data.Students[ , vars]
#
# # define Q-matrix
# Q <- matrix( 0 , nrow=8 , ncol=2 )
# Q[1:4,1] <- Q[5:8,2] <- 1
#
# #*** Model 1: Two-dimensional 2PL model
# mod1 <- tam.mml.2pl( dat , Q=Q , control=list( nodes=seq(-4,4,len=12) ) )
# summary(mod1)
#
# # linear approximation CFA
# cfa1 <- IRT.linearCFA(mod1)
# summary(cfa1)
#
# # linear CFA in lavaan package
# lavmodel <- "
# sc =~ sc1+sc2+sc3+sc4
# mj =~ mj1+mj2+mj3+mj4
# sc1 ~ 1
# sc ~~ mj
# "
# mod1b <- lavaan::sem( lavmodel , data = dat , missing="fiml" , std.lv=TRUE)
# summary(mod1b , standardized=TRUE , fit.measures=TRUE )
#
# #############################################################################
# # EXAMPLE 2: Unidimensional confirmatory factor analysis data.Students
# #############################################################################
#
# data(data.Students, package="CDM")
# # select variables
# vars <- scan(nlines=1 , what="character")
# sc1 sc2 sc3 sc4
# dat <- data.Students[ , vars]
#
# #*** Model 1: 2PL model
# mod1 <- tam.mml.2pl( dat )
# summary(mod1)
#
# # linear approximation CFA
# cfa1 <- IRT.linearCFA(mod1)
# summary(cfa1)
#
# # linear CFA
# lavmodel <- "
# sc =~ sc1+sc2+sc3+sc4
# "
# mod1b <- lavaan::sem( lavmodel , data = dat , missing="fiml" , std.lv=TRUE)
# summary(mod1b , standardized=TRUE , fit.measures=TRUE )
# ## End(Not run)
Run the code above in your browser using DataLab