Learn R Programming

TAM (version 1.995-0)

IRT.residuals: Residuals in an IRT Model

Description

Defines an S3 method for the computation of observed residual values. The computation of residuals is based on weighted likelihood estimates as person parameters, see tam.wle. IRT.residuals can only be applied for unidimensional IRT models. The methods IRT.residuals and residuals are equivalent.

Usage

IRT.residuals(object, ...)
"IRT.residuals"(object, ...) "residuals"(object, ...)
"IRT.residuals"(object, ...) "residuals"(object, ...)
"IRT.residuals"(object, ...) "residuals"(object, ...)

Arguments

object
Object of class tam.mml, tam.mml.2pl or tam.mml.mfr.
...
Further arguments to be passed

Value

List with following entries
residuals
Residuals
stand_residuals
Standardized residuals
X_exp
Expected value of the item response $X_{pi}$
X_var
Variance of the item response $X_{pi}$
theta
Used person parameter estimate
probs
Expected item response probabilities

See Also

See also the residuals (eRm) or residuals (mirt) functions.

See also predict.tam.mml.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Residuals data.read
#############################################################################	

library(sirt)
data(data.read,package="sirt")
dat <- data.read

# for Rasch model
mod <- tam.mml( dat )
# extract residuals
res <- IRT.residuals( mod )
str(res)

Run the code above in your browser using DataLab