## Not run:
# #############################################################################
# # EXAMPLE 1: CCT data, Janssen and Geiser (2010, LID)
# # Latent class analysis based on data.janssen
# #############################################################################
#
# data(data.janssen)
# dat <- data.janssen
# colnames(dat)
# ## [1] "PIS1" "PIS3" "PIS4" "PIS5" "SCR6" "SCR9" "SCR10" "SCR17"
#
# #*********************************************************************
# #*** Model 1: Latent class analysis with two classes
#
# tammodel <- "
# ANALYSIS:
# TYPE=LCA;
# NCLASSES(2);
# NSTARTS(10,20);
# LAVAAN MODEL:
# # missing item numbers (e.g. PIS2) are ignored in the model
# F =~ PIS1__PIS5 + SCR6__SCR17
# "
# mod3 <- tamaan( tammodel , resp=dat )
# summary(mod3)
#
# # extract item response functions
# imod2 <- IRT.irfprob(mod3)[,2,]
# # plot class specific probabilities
# ncl <- 2
# matplot( imod2 , type="o" , pch=1:ncl , xlab="Item" , ylab="Probability" )
# legend( 1 , .3 , paste0("Class",1:ncl) , lty=1:ncl , col=1:ncl , pch=1:ncl )
#
# #*********************************************************************
# #*** Model 2: Latent class analysis with three classes
#
# tammodel <- "
# ANALYSIS:
# TYPE=LCA;
# NCLASSES(3);
# NSTARTS(10,20);
# LAVAAN MODEL:
# F =~ PIS1__PIS5 + SCR6__SCR17
# "
# mod3 <- tamaan( tammodel , resp=dat )
# summary(mod3)
#
# # extract item response functions
# imod2 <- IRT.irfprob(mod3)[,2,]
# # plot class specific probabilities
# ncl <- 3
# matplot( imod2 , type="o" , pch=1:ncl , xlab="Item" , ylab="Probability" )
# legend( 1 , .3 , paste0("Class",1:ncl) , lty=1:ncl , col=1:ncl , pch=1:ncl )
#
# # compare models
# AIC(mod1); AIC(mod2)
# ## End(Not run)
Run the code above in your browser using DataLab