######################################################################
# (1) Scored numeracy data
######################################################################
data(data.numeracy)
dat <- data.numeracy$scored
#Run IRT analysis: Rasch model
mod1 <- tam.mml(dat)
#Item difficulties
mod1$xsi
ItemDiff <- mod1$xsi$xsi
ItemDiff
#Ability estimate - Weighted Likelihood Estimate
Abil <- tam.wle(mod1)
Abil
PersonAbility <- Abil$theta
PersonAbility
#Descriptive statistics of item and person parameters
hist(ItemDiff)
hist(PersonAbility)
mean(ItemDiff)
mean(PersonAbility)
stats::sd(ItemDiff)
stats::sd(PersonAbility)
## Not run:
# #Extension
# #plot histograms of ability and item parameters in the same graph
# oldpar <- par(no.readonly = TRUE) # save writable default graphic settings
# windows(width=4.45, height=4.45, pointsize=12)
# layout(matrix(c(1,1,2),3,byrow=TRUE))
# layout.show(2)
# hist(PersonAbility,xlim=c(-3,3),breaks=20)
# hist(ItemDiff,xlim=c(-3,3),breaks=20)
#
# par( oldpar ) # restore default graphic settings
# hist(PersonAbility,xlim=c(-3,3),breaks=20)
#
# ######################################################################
# # (2) Raw numeracy data
# ######################################################################
#
# raw_resp <- data.numeracy$raw
#
# #score responses
# key <- c(1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1)
# scored <- sapply( seq(1,length(key)) ,
# FUN = function(ii){ 1*(raw_resp[,ii] == key[ii]) } )
#
# #run IRT analysis
# mod1 <- tam.mml(scored)
#
# #Ability estimate - Weighted Likelihood Estimate
# Abil <- tam.wle(mod1)
#
# #CTT statistics
# ctt1 <- tam.ctt(raw_resp, Abil$theta)
# write.csv(ctt1,"D1_ctt1.csv") # write statistics into a file
# # use maybe write.csv2 if ';' should be the column separator
#
# #Fit statistics
# Fit <- tam.fit(mod1)
# Fit
#
# # plot expected response curves
# plot( mod1 , ask=TRUE )
# ## End(Not run)
Run the code above in your browser using DataLab