Learn R Programming

TAM (version 1.995-0)

data.sim.rasch: Simulated Rasch data

Description

Simulated Rasch data under unidimensional trait distribution

Usage

data(data.sim.rasch) data(data.sim.rasch.pweights) data(data.sim.rasch.missing)

Arguments

Format

The format is: num [1:2000, 1:40] 1 0 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 2 ..$ : NULL ..$ : chr [1:40] "I1" "I2" "I3" "I4" ...

Source

Simulated data (see Details)

Details

N <- 2000 # simulate predictors Y <- cbind( stats::rnorm( N , sd = 1.5) , stats::rnorm(N , sd = .3 ) ) theta <- stats::rnorm( N ) + .4 * Y[,1] + .2 * Y[,2] # latent regression model # simulate item responses with missing data I <- 40 resp[ theta < 0 , c(1,seq(I/2+1 , I)) ] <- NA # define person weights pweights <- c( rep(3,N/2) , rep( 1, N/2 ) )

Examples

Run this code
## Not run:       
# data(data.sim.rasch)
# N <- 2000
# Y <- cbind( stats::rnorm( N , sd = 1.5) , stats::rnorm(N , sd = .3 ) )
# 
# # Loading Matrix
# # B <- array( 0 , dim = c( I , 2 , 1 )  )
# # B[1:(nrow(B)), 2, 1] <- 1
# B <- designMatrices(resp = data.sim.rasch)[["B"]]
#   
# # estimate Rasch model
# mod1_1 <- tam.mml(resp=data.sim.rasch , Y=Y)
# 
# # standard errors
# res1 <- tam.se(mod1_1)
# 
# # Compute fit statistics
# tam.fit(mod1_1)
# 
# # plausible value imputation
# # PV imputation has to be adpated for multidimensional case!
# pv1 <- tam.pv( mod1_1 , nplausible = 7 , # 7 plausible values 
#                samp.regr = TRUE       # sampling of regression coefficients
#               )
#               
# # item parameter constraints
# xsi.fixed <- matrix( c( 1, -2,5, -.22,10, 2 ), nrow=3 , ncol=2 , byrow=TRUE)
# xsi.fixed
# mod1_4 <- tam.mml( resp=data.sim.rasch , xsi.fixed=xsi.fixed )
# 
# # missing value handling
# data(data.sim.rasch.missing)
# mod1_2 <- tam.mml(data.sim.rasch.missing , Y = Y)
# 
# # handling of sample (person) weights
# data(data.sim.rasch.pweights)
# N <- 1000
# pweights <- c(  rep(3,N/2) , rep( 1, N/2 ) )
# mod1_3 <- tam.mml( data.sim.rasch.pweights , control = list(conv = .001) , 
#                pweights = pweights )
#   ## End(Not run)

Run the code above in your browser using DataLab