## Not run:
# data(data.sim.rasch)
# N <- 2000
# Y <- cbind( stats::rnorm( N , sd = 1.5) , stats::rnorm(N , sd = .3 ) )
#
# # Loading Matrix
# # B <- array( 0 , dim = c( I , 2 , 1 ) )
# # B[1:(nrow(B)), 2, 1] <- 1
# B <- designMatrices(resp = data.sim.rasch)[["B"]]
#
# # estimate Rasch model
# mod1_1 <- tam.mml(resp=data.sim.rasch , Y=Y)
#
# # standard errors
# res1 <- tam.se(mod1_1)
#
# # Compute fit statistics
# tam.fit(mod1_1)
#
# # plausible value imputation
# # PV imputation has to be adpated for multidimensional case!
# pv1 <- tam.pv( mod1_1 , nplausible = 7 , # 7 plausible values
# samp.regr = TRUE # sampling of regression coefficients
# )
#
# # item parameter constraints
# xsi.fixed <- matrix( c( 1, -2,5, -.22,10, 2 ), nrow=3 , ncol=2 , byrow=TRUE)
# xsi.fixed
# mod1_4 <- tam.mml( resp=data.sim.rasch , xsi.fixed=xsi.fixed )
#
# # missing value handling
# data(data.sim.rasch.missing)
# mod1_2 <- tam.mml(data.sim.rasch.missing , Y = Y)
#
# # handling of sample (person) weights
# data(data.sim.rasch.pweights)
# N <- 1000
# pweights <- c( rep(3,N/2) , rep( 1, N/2 ) )
# mod1_3 <- tam.mml( data.sim.rasch.pweights , control = list(conv = .001) ,
# pweights = pweights )
# ## End(Not run)
Run the code above in your browser using DataLab