Learn R Programming

TAM (version 1.995-0)

tam.ctt: Classical Test Theory Based Statistics and Plots

Description

This function computes some item statistics based on classical test theory.

Usage

tam.ctt(resp, wlescore=NULL, pvscores=NULL, group=NULL , progress=TRUE) tam.ctt2(resp, wlescore=NULL, group=NULL , allocate=30 , progress=TRUE) tam.ctt3(resp, wlescore=NULL, group=NULL , allocate=30 , progress=TRUE)
plotctt( resp , theta , Ncuts = NULL , ask = FALSE , col.list=NULL , package="lattice" , ... )

Arguments

resp
A data frame with unscored or scored item responses
wlescore
A vector with person parameter estimates, e.g. weighted likelihood estimates obtained from tam.wle. If wlescore=NULL is chosen in tam.ctt2, then only a frequency table of all items is produced.
pvscores
A matrix with plausible values, e.g. obtained from tam.pv
group
Vector of group identifiers if descriptive statistics shall be groupwise calculated
progress
An optional logical indicating whether computation progress should be displayed.
allocate
Average number of categories per item. This argument is just used for matrix size allocations. If an error is produced, use a sufficiently higher number.
theta
A score to be conditioned
Ncuts
Number of break points for theta
ask
A logical which asks for changing the graphic from item to item. The default is FALSE.
col.list
Optional vector of colors for plotting
package
Package used for plotting. Can be "lattice" or "graphics".
...
Further arguments to be passed.

Value

A data frame with following columns:
index
Index variable in this data frame
group
Group identifier
itemno
Item number
item
Item
N
Number of students responding to this item
Categ
Category label
AbsFreq
Absolute frequency of category
RelFreq
Relative frequency of category
rpb.WLE
Point biserial correlation of an item category and the WLE
M.WLE
Mean of the WLE of students in this item category
SD.WLE
Standard deviation of the WLE of students in this item category
rpb.PV
Point biserial correlation of an item category and the PV
M.PV
Mean of the PV of students in this item category
SD.PV
Standard deviation of the PV of students in this item category

Details

The functions tam.ctt2 and tam.ctt3 use Rcpp code and are slightly faster. However, only tam.ctt allows the input of wlescore and pvscores.

See Also

http://www.edmeasurementsurveys.com/TAM/Tutorials/4CTT.htm

Examples

Run this code
## Not run: 
# #############################################################################
# # EXAMPLE 1: Multiple choice data data.mc
# #############################################################################
# 
# data(data.mc)
# # estimate Rasch model for scored data.mc data
# mod <- tam.mml( resp=data.mc$scored )
# # estimate WLE
# w1 <- tam.wle( mod )
# # estimate plausible values
# set.seed(789)
# p1 <- tam.pv( mod , ntheta=500 , normal.approx=TRUE )$pv
# 
# # CTT results for raw data
# stat1 <- tam.ctt( resp=data.mc$raw , wlescore=w1$theta , pvscores=p1[,-1] )
# stat1a <- tam.ctt2( resp=data.mc$raw , wlescore=w1$theta )  # faster
# stat1b <- tam.ctt2( resp=data.mc$raw )  # only frequencies
# stat1c <- tam.ctt3( resp=data.mc$raw , wlescore=w1$theta )  # faster
# 
# # plot empirical item response curves
# plotctt( resp=data.mc$raw , theta = w1$theta , Ncuts =5 , ask=TRUE)
# # use graphics for plot
# plotctt( resp=data.mc$raw , theta = w1$theta , Ncuts =5 , ask=TRUE , package="graphics")
# # change colors
# col.list <- c( "darkred" ,  "darkslateblue" , "springgreen4" , "darkorange" , 
#                 "hotpink4" , "navy" )
# plotctt( resp=data.mc$raw , theta = w1$theta , Ncuts =5 , ask=TRUE , 
#         package="graphics" , col.list = col.list )      
# 
# # CTT results for scored data
# stat2 <- tam.ctt( resp=data.mc$scored , wlescore=w1$theta , pvscores=p1[,-1] )
# 
# # descriptive statistics for different groups
# # define group identifier
# group <- c( rep(1,70) , rep(2,73) )
# stat3 <- tam.ctt( resp=data.mc$raw , wlescore=w1$theta , pvscores=p1[,-1] , group=group)
# stat3a <- tam.ctt2( resp=data.mc$raw , wlescore=w1$theta ,  group=group)
# ## End(Not run)

Run the code above in your browser using DataLab