This function approximates a fitted item response model by a linear
confirmatory factor analysis. I.e., given item response functions, the
expectation
IRT.linearCFA( object, group=1)# S3 method for IRT.linearCFA
summary(object, …)
Fitted item response model for which the IRT.expectedCounts
method is defined.
Group identifier which defines the selected group.
Further arguments to be passed.
A list with following entries
Data frame with factor loadings. Mlat
and
SDlat
denote the model-implied item mean and standard deviation.
The values ResidVar
and h2
denote residual variances
and item communality.
Data frame with standardized factor loadings.
Mean of factors
Standard deviations of factors
Vermunt, J. K., & Magidson, J. (2005). Factor Analysis with categorical indicators: A comparison between traditional and latent class approaches. In A. Van der Ark, M.A. Croon & K. Sijtsma (Eds.), New Developments in Categorical Data Analysis for the Social and Behavioral Sciences (pp. 41-62). Mahwah: Erlbaum
See tam.fa
for confirmatory factor analysis in TAM.
# NOT RUN {
library(lavaan)
#############################################################################
# EXAMPLE 1: Two-dimensional confirmatory factor analysis data.Students
#############################################################################
data(data.Students, package="CDM")
# select variables
vars <- scan(nlines=1, what="character")
sc1 sc2 sc3 sc4 mj1 mj2 mj3 mj4
dat <- data.Students[, vars]
# define Q-matrix
Q <- matrix( 0, nrow=8, ncol=2 )
Q[1:4,1] <- Q[5:8,2] <- 1
#*** Model 1: Two-dimensional 2PL model
mod1 <- TAM::tam.mml.2pl( dat, Q=Q, control=list( nodes=seq(-4,4,len=12) ) )
summary(mod1)
# linear approximation CFA
cfa1 <- TAM::IRT.linearCFA(mod1)
summary(cfa1)
# linear CFA in lavaan package
lavmodel <- "
sc=~ sc1+sc2+sc3+sc4
mj=~ mj1+mj2+mj3+mj4
sc1 ~ 1
sc ~~ mj
"
mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE)
summary(mod1b, standardized=TRUE, fit.measures=TRUE )
#############################################################################
# EXAMPLE 2: Unidimensional confirmatory factor analysis data.Students
#############################################################################
data(data.Students, package="CDM")
# select variables
vars <- scan(nlines=1, what="character")
sc1 sc2 sc3 sc4
dat <- data.Students[, vars]
#*** Model 1: 2PL model
mod1 <- TAM::tam.mml.2pl( dat )
summary(mod1)
# linear approximation CFA
cfa1 <- TAM::IRT.linearCFA(mod1)
summary(cfa1)
# linear CFA
lavmodel <- "
sc=~ sc1+sc2+sc3+sc4
"
mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE)
summary(mod1b, standardized=TRUE, fit.measures=TRUE )
# }
Run the code above in your browser using DataLab