To utilize this package, the count matrix coupled with label information
should be stored to a TCC-class object using the new method.
All functions,
except for two recently added functions (i.e., ROKU and
WAD) for microarray data,
used in this package require this TCC-class object.
Using this object, the calcNormFactors function calculates
normalization factors and the estimateDE function estimates
the degree of differential expression (DE) for individual genes.
The estimated normalization factors obtained by using the
calcNormFactors function are used within the statistical
model for differential analysis in the estimateDE function.
Both two functions internally call functions from other packages
(edgeR, DESeq, baySeq, EBSeq, and samr) when specified.
TCC also provides some useful functions: simulateReadCounts
for generating simulation data with various experimental designs,
plot for depicting a M-A plot,
plotFCPseudocolor for depicting a pseudo-color image of
simulation condition that the user specified,
WAD for identifying DEGs from two-group microarray data
(single-factor design), and ROKU for identifying
tissue-specific genes from microarray data for many tissues.
data(hypoData)
group <- c(1, 1, 1, 2, 2, 2)
tcc <- new("TCC", hypoData, group)
show(tcc)
Run the code above in your browser using DataLab