# Here is a brief example of how to merge methylation and gene expression (RNASeq) data
# and use the data for CCA analysis
library(TCGA2STAT)
lusc.methyl <- getTCGA(disease="LUSC", data.type="Methylation", clinical=FALSE)
lusc.rnaseq2 <- getTCGA(disease="LUSC", data.type="RNASeq2")
met.var <- apply(lusc.methyl[,-c(1,2,3)], 1, var)
met.data <- subset(lusc.methyl[,-c(1,2,3)], met.var >= quantile(met.var, 0.99, na.rm=TRUE)
& !is.na(met.var))
rnaseq2.var <- apply(log10(1+lusc.rnaseq2$dat), 1, var)
rnaseq.data <- subset(log10(1+lusc.rnaseq2$dat),
rnaseq2.var >= quantile(rnaseq2.var, 0.99, na.rm=TRUE)
& !is.na(rnaseq2.var))
met.rnaseq2 <- GeneMerge(dat1 = rnaseq.data, dat2= met.data)
library(CCA)
estl <- estim.regul(met.rnaseq2$X, met.rnaseq2$Y)
lusc.cc <- rcc(met.rnaseq2$X, met.rnaseq2$Y, estl$lambda1, estl$lambda1)
plt.cc(lusc.cc, d1=1, d2=2, type="b", var.label=TRUE)Run the code above in your browser using DataLab