getTCGA(disease = "GBM", data.type = "RNASeq2", type = "", filter = "Y",
p = getOption("mc.cores", 2L), clinical = TRUE, cvars = "OS")GBM" for glioblastoma multiforme .RNASeq2" for gene level RNA-Seq data from the second pipeline (RNASeqV2).data.type="CNV_SNP".TRUE.OS" for overall survival.dat and clinical data as specified by cvars. Thus, each matrix of size sample x (cvars + gene)
Note: for methylation data, each row in dat is a probe for CpG island, the first three columns are gene symbol, chromosome, and genome coordinate.
CNToolsdisease include "ACC", "BLCA", "BRCA", "CESC", "CHOL", "COAD", "COADREAD", "DLBC", "ESCA", "FPPP", "GBM", "GBMLGG", "HNSC", "KICH", "KIPAN", "KIRC", "KIRP", "LAML", "LGG", "LIHC", "LUAD", "LUSC", "MESO", "OV", "PAAD", "PCPG", "PRAD", "READ", "SARC", "SKCM", "STAD", "TGCT", "THCA", "THYM", "UCEC", "UCS", and "UVM". Values for data.type include "RNASeq2", "RNASeq", "miRNASeq", "CNA_SNP", "CNV_SNP", "CNA_CGH", "Methylation", "Mutation", "mRNA_Array", and "miRNA_Array". Note that not all combinations are permitted; Appendix A of the package vignette outlines all values of disease and data.type accommodated by TCGA2STAT.The type parameter should only be used along with these four data.type parameters:
RNASeq- "raw_counts" for raw read counts (default); "RPKM" for normalized read counts (reads per kilobase per million mapped reads).miRNASeq - "raw_counts" for raw read counts (default); "reads_per_million_miRNA_mapped" for normalized read counts.Mutation - "somatic" for non-silent somatic mutations (default); "all" for all mutations.Methylation - "27K" platform (default), "450K" platform, and"all" for both platforms.library(TCGA2STAT)
ov.rnaseq2 <- getTCGA(disease="OV", data.type="RNASeq2")
ov.rnaseq <- getTCGA(disease="OV", data.type="RNASeq", type="RPKM")Run the code above in your browser using DataLab