Learn R Programming

TCIU (version 1.2.7)

Spacekime Analytics, Time Complexity and Inferential Uncertainty

Description

Provide the core functionality to transform longitudinal data to complex-time (kime) data using analytic and numerical techniques, visualize the original time-series and reconstructed kime-surfaces, perform model based (e.g., tensor-linear regression) and model-free classification and clustering methods in the book Dinov, ID and Velev, MV. (2021) "Data Science: Time Complexity, Inferential Uncertainty, and Spacekime Analytics", De Gruyter STEM Series, ISBN 978-3-11-069780-3. . The package includes 18 core functions which can be separated into three groups. 1) draw longitudinal data, such as Functional magnetic resonance imaging(fMRI) time-series, and forecast or transform the time-series data. 2) simulate real-valued time-series data, e.g., fMRI time-courses, detect the activated areas, report the corresponding p-values, and visualize the p-values in the 3D brain space. 3) Laplace transform and kimesurface reconstructions of the fMRI data.

Copy Link

Version

Install

install.packages('TCIU')

Monthly Downloads

202

Version

1.2.7

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Yueyang Shen

Last Published

September 15th, 2024

Functions in TCIU (1.2.7)

kimesurface_transform

kimesurface transform on a function with a specified set of complex values
fmri_stimulus_detect

fMRI data stimulus detection
phase2_pval

phase2_pval
fmri_simulate_func

real-valued fMRI data simulation
phase3_pval

phase3_pval
fmri_ROI_phase2

tensor-on-tensor regression on region of interest(ROI) of the brain
fmri_image

interactive graph object of the fMRI image
fmri_pval_comparison_3d

comparison between 3d visualization for p-values
fmri_pval_comparison_2d

2D comparison visualization between the p-values
GaussSmoothArray

GaussSmoothArray
fmri_2dvisual

visualization of the 2D brain (axial, sagittal and coronal) with the activated areas
fmri_3dvisual_region

visualization of the 3D brain with the activated areas by regions
LT

numerical method to compute Laplace Transform
GaussSmoothKernel

GaussSmoothKernel
ILT

numerical method to compute inverse of Laplace Transform
fmri_3dvisual

visualization of the 3D brain with the activated areas
fmri_ROI_phase1

p-values on region of interest(ROI) of the brain
fmri_kimesurface

interactive graph object of 3D kime-series
fmri_time_series

visualization of the fMRI data (real, imaginary, magnitude, and phase parts) in time series
inv_kimesurface_transform

inverse kimesurface transform on a function in different periodic ranges
fmri_ts_forecast

forecast the fMRI data based on the time series
mask_label

mask_label
phase1_pval

phase1_pval
mask_dict

mask_dict
mask

mask
fmri_post_hoc

post-hoc process for p values
sample_save

sample_save