# \donttest{
# ---------------------------------------------------------------------------
# K-Groups Clustering via Energy Distance
#
# We will cluster dim=0 under top-5 landscape functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# ---------------------------------------------------------------------------
## Generate Data and Diagram from VR Filtration
ndata = 10
list_rips = list()
for (i in 1:ndata){
dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
dat2 = gen2holes(n=100, sd=1)$data
dat3 = gen2circles(n=100, sd=1)$data
list_rips[[i]] = diagRips(dat1, maxdim=1)
list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
list_lab = c(rep(1,ndata), rep(2,ndata), rep(3,ndata))
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}
## Run MDS for Visualization
embed = fsmds(list_land0, ndim=2)
## Clustering with 'single' and 'complete' linkage
hc.sing <- fshclust(list_land0, method="single")
hc.comp <- fshclust(list_land0, method="complete")
## Visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(embed, pch=19, col=list_lab, main="2-dim embedding")
plot(hc.sing, main="single linkage")
plot(hc.comp, main="complete linkage")
par(opar)
# }
Run the code above in your browser using DataLab