Discriminant Correspondence Analysis (DICA) via TExPosition.
tepDICA(DATA, make_data_nominal = FALSE, DESIGN = NULL, make_design_nominal = TRUE,
group.masses = NULL, weights = NULL, symmetric = TRUE, graphs = TRUE, k = 0)See epCA (and also coreCA) for details on what is returned. In addition to the values returned:
factor scores computed for supplemental observations
squared distances for supplemental observations
cosines for supplemental observations
a list of assignment data. See fii2fi and R2
latent variables from DATA1 computed for observations
latent variables from DATA2 computed for observations
original data to perform a DICA on. Data can be contingency (like CA) or categorical (like MCA).
a boolean. If TRUE (default), DATA is recoded as a dummy-coded matrix. If FALSE, DATA is a dummy-coded matrix.
a design matrix to indicate if rows belong to groups. Required for DICA.
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
a diagonal matrix or column-vector of masses for the groups.
a diagonal matrix or column-vector of weights for the column it
a boolean. If TRUE (default) symmetric factor scores for rows.
a boolean. If TRUE (default), graphs and plots are provided (via tepGraphs)
number of components to return.
Derek Beaton, Hervé Abdi
If you use Hellinger distance, it is best to set symmetric to FALSE.
Note: DICA is a special case of PLS-CA (tepPLSCA) wherein DATA1 are data and DATA2 are a group-coded disjunctive matrix.
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H. and Williams, L.J. (2010). Correspondence analysis. In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Abdi, H. (2007). Discriminant correspondence analysis. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 270-275.
Pinkham, A.E., Sasson, N.J., Beaton, D., Abdi, H., Kohler, C.G., Penn, D.L. (in press, 2012). Qualitatively distinct factors contribute to elevated rates of paranoia in autism and schizophrenia. Journal of Abnormal Psychology, 121, -.
Williams, L.J., Abdi, H., French, R., & Orange, J.B. (2010). A tutorial on Multi-Block Discriminant Correspondence Analysis (MUDICA): A new method for analyzing discourse data from clinical populations. Journal of Speech Language and Hearing Research, 53, 1372-1393.
Williams, L.J., Dunlop, J.P., & Abdi, H. (2012). Effect of age on the variability in the production of text-based global inferences. PLoS One, 7(5): e36161. doi:10.1371/ journal.pone.0036161 (pp.1-9)
coreCA, epCA, epMCA
For MatLab code: http://utd.edu/~herve/HerveAbdi_MatlabPrograms4MUDICA.zip
For additional R code (with inference tests): http://utdallas.edu/~dfb090020/attachments/MuDiCA.zip
data(dica.wine)
dica.res <- tepDICA(dica.wine$data,DESIGN=dica.wine$design,make_design_nominal=FALSE)
Run the code above in your browser using DataLab