Barycentric Discriminant Analysis (BADA) via TExPosition.
tepBADA(
DATA,
scale = TRUE,
center = TRUE,
DESIGN = NULL,
make_design_nominal = TRUE,
graphs = TRUE,
k = 0
)
See corePCA
for details on what is returned. In
addition to the values returned:
factor scores computed for supplemental observations
squared distances for supplemental observations
cosines for supplemental observations
a list of assignment data. See fii2fi
and
R2
latent variables from DATA1 computed for observations
latent variables from DATA2 computed for observations
original data to perform a BADA on.
a boolean, vector, or string. See expo.scale
for
details.
a boolean, vector, or string. See expo.scale
for
details.
a design matrix to indicate if rows belong to groups. Required for BADA.
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
a boolean. If TRUE (default), graphs and plots are provided
(via tepGraphs
)
number of components to return.
Derek Beaton
Note: BADA is a special case of PLS (tepPLS
) wherein DATA1 are
data and DATA2 are a group-coded disjunctive matrix. This is also called
mean-centered PLS (Krishnan et al., 2011).
Abdi, H., and Williams, L.J. (2010). Principal component
analysis. Wiley Interdisciplinary Reviews: Computational Statistics,
2, 433-459.
Abdi, H. and Williams, L.J. (2010). Correspondence analysis.
In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of
Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007).
Singular Value Decomposition (SVD) and Generalized Singular Value
Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of
Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Abdi,
H. & Williams, L.J. (2010). Barycentric discriminant analysis (BADIA). In
N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of
Research Design. Thousand Oaks (CA): Sage. pp. 64-75.
Abdi, H.,
Williams, L.J., Beaton, D., Posamentier, M., Harris, T.S., Krishnan, A., &
Devous, M.D. (in press, 2012). Analysis of regional cerebral blood flow data
to discriminate among Alzheimer's disease, fronto-temporal dementia, and
elderly controls: A multi-block barycentric discriminant analysis (MUBADA)
methodology. Journal of Alzheimer Disease, , -. Abdi, H., Williams,
L.J., Connolly, A.C., Gobbini, M.I., Dunlop, J.P., & Haxby, J.V. (2012).
Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): How to assign
scans to categories without using spatial normalization. Computational
and Mathematical Methods in Medicine, 2012, 1-15.
doi:10.1155/2012/634165.
Krishnan, A., Williams, L. J., McIntosh, A. R.,
& Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: A
tutorial and review. NeuroImage, 56(2), 455 -- 475.
corePCA
, epPCA
, epMDS
data(bada.wine)
bada.res <- tepBADA(bada.wine$data,scale=FALSE,DESIGN=bada.wine$design,make_design_nominal=FALSE)
Run the code above in your browser using DataLab