Partial Least Squares-Correspondence Analysis (PLSCA) via TExPosition.
tepPLSCA(
DATA1,
DATA2,
make_data1_nominal = FALSE,
make_data2_nominal = FALSE,
DESIGN = NULL,
make_design_nominal = TRUE,
symmetric = TRUE,
graphs = TRUE,
k = 0
)
See epCA
(and also coreCA
) for details
on what is returned. In addition to the values returned:
Weights for columns of DATA1, replaces M
from
coreCA
.
Weights for columns of DATA2, replaces W
from coreCA
.
latent variables from DATA1 computed for observations
latent variables from DATA2 computed for observations
Data matrix 1 (X), must be categorical (like MCA) or in
disjunctive code see make_data1_nominal
.
Data matrix 2 (Y), must be categorical (like MCA) or in
disjunctive code see make_data2_nominal
.
a boolean. If TRUE (default), DATA1 is recoded as a dummy-coded matrix. If FALSE, DATA1 is a dummy-coded matrix.
a boolean. If TRUE (default), DATA2 is recoded as a dummy-coded matrix. If FALSE, DATA2 is a dummy-coded matrix.
a design matrix to indicate if rows belong to groups.
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
a boolean. If TRUE (default) symmetric factor scores for rows.
a boolean. If TRUE (default), graphs and plots are provided
(via tepGraphs
)
number of components to return.
Derek Beaton, Hervé Abdi
This implementation of Partial Least Squares is for two categorical data sets (Beaton et al., 2013), and based on the PLS method proposed by Tucker (1958) and again by Bookstein (1994).
Tucker, L. R. (1958). An inter-battery method of factor
analysis. Psychometrika, 23(2), 111--136.
Bookstein, F.,
(1994). Partial least squares: a dose–response model for measurement in the
behavioral and brain sciences. Psycoloquy 5 (23)
Abdi, H.
(2007). Singular Value Decomposition (SVD) and Generalized Singular Value
Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of
Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial
Least Squares (PLS) methods for neuroimaging: A tutorial and review.
NeuroImage, 56(2), 455 -- 475.
Beaton, D., Filbey,
F., & Abdi H. (in press, 2013). Integrating partial least squares
correlation and correspondence analysis for nominal data. In Abdi, H., Chin,
W., Esposito Vinzi, V., Russolillo, G., & Trinchera, L. (Eds.), New
Perspectives in Partial Least Squares and Related Methods. New York:
Springer Verlag.
coreCA
, epCA
, epMCA
,
tepDICA
data(snps.druguse)
plsca.res <- tepPLSCA(snps.druguse$DATA1,snps.druguse$DATA2,
make_data1_nominal=TRUE,make_data2_nominal=TRUE)
Run the code above in your browser using DataLab