This function computes Projected Principal Component Analysis (PPC) for the provided input data, estimating factor loadings and uniquenesses. It calculates mean squared errors and loss metrics for the estimated values compared to true values.
Usage
PPC1_TFM(x, m, A, D, p)
Value
A list containing:
Ap
Estimated factor loadings.
Dp
Estimated uniquenesses.
MSESigmaA
Mean squared error for factor loadings.
MSESigmaD
Mean squared error for uniquenesses.
LSigmaA
Loss metric for factor loadings.
LSigmaD
Loss metric for uniquenesses.
Arguments
x
A matrix of input data.
m
The number of principal components to extract (integer).