50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

TFisher (version 0.2.0)

stat.soft.omni: Construct omnibus soft-thresholding Fisher's p-value combination statistic.

Description

Construct omnibus soft-thresholding Fisher's p-value combination statistic.

Usage

stat.soft.omni(p, TAU1, M = NULL)

Arguments

p

- input p-values.

TAU1

- a vector of truncation parameters (=normalization parameters). Must be in non-descending order.

M

- correlation matrix of the input statistics. Default = NULL assumes independence.

Value

omni - omnibus soft-thresholding statistic.

pval - p-values of each soft-thresholding tests.

Details

Let xi, i=1,...,n be a sequence of individual statistics with correlation matrix M, pi be the corresponding two-sided p-values, then the soft-thresholding statistics Softj=i=1n2log(pi/τ1j)I(piτ1j), j=1,...,d. The omnibus test statistic is the minimum p-value of these soft-thresholding tests, Wo=minjGj(Softj), where Gj is the survival function of Softj.

References

1. Hong Zhang and Zheyang Wu. "TFisher Tests: Optimal and Adaptive Thresholding for Combining p-Values", submitted.

Examples

Run this code
# NOT RUN {
pval = runif(20)
TAU1 = c(0.01, 0.05, 0.5, 1)
stat.soft.omni(p=pval, TAU1=TAU1)
M = matrix(0.3,20,20) + diag(1-0.3,20)
stat.soft.omni(p=pval, TAU1=TAU1, M=M)
# }

Run the code above in your browser using DataLab