Learn R Programming

TFunHDDC (version 1.0.2)

genTriangles: genTriangles

Description

Generate contaminated triangle data. Groups 1, 2, 3, and 4 are separable over the two dimensions of functional data. Groups 5 and 6 contain the contaminated curves of groups 1 and 3 respectively.

Usage

genTriangles()

Arguments

Value

fd

List of functional data objects representing the two dimensions of triangle data.

groupd

Group classification for each curve

Author

Cristina Anton and Iain Smith

Details

Group 1:

\(X_1(t) = U + (0.6 - U)H_1(t) + \epsilon_1(t)\)

\( X_2(t) = U + (0.5 - U)H_1(t) + \epsilon_1(t)\)

Contaminated \(X_1(t) = \sin(t) + (0.6 - U)H_1(t) + \epsilon_2(t)\)

Contaminated \( X_2(t) = \sin(t) + (0.5 - U)H_1(t) + \epsilon_2(t)\)

Group 2:

\(X_1(t) = U + (0.6 - U)H_2(t) + \epsilon_1(t)\)

\(X_2(t) = U + (0.5 - U)H_2(t) + \epsilon_1(t)\)

Group 3:

\(X_1(t) = U + (0.5 - U)H_1(t) + \epsilon_1(t)\)

\( X_2(t) = U + (0.6 - U)H_2(t) + \epsilon_1(t)\)

Contaminated \(X_1(t) = \sin(t) + (0.5 - U)H_1(t) + \epsilon_3(t)\)

Contaminated \(X_2(t) = \sin(t) + (0.6 - U)H_2(t) + \epsilon_3(t)\)

Group 4:

\(X_1(t) = U + (0.5 - U)H_2(t) + \epsilon_1(t)\)

\(X_2(t) = U + (0.6 - U)H_1(t) + \epsilon_1(t).\) Here \(t\in [1,21]\), \(H_1(t) = (6-\vert t-7\vert)_+\), and \(H_2(t) = (6-\vert t-15\vert)_+\), with \((\cdot)_+\) representing the positive part. \(U \sim \mathcal{U}(0, 0.1)\), and \(\epsilon_1(t)\sim N(0, 0.5)\), \(\epsilon_2(t)\sim N(0, 2)\), \(\epsilon_3(t) \sim Cauchy(0, 4)\) are mutually independent white noises and independent of \(U\). We simulate 100 curves for each group, groups 1 and 3 consisting of 80 ordinary curves and 20 contaminated curves. Curves are smoothed using a 25 cubic B-spline basis.

References

- C.Bouveyron and J.Jacques (2011), Model-based Clustering of Time Series in Group-specific Functional Subspaces, Advances in Data Analysis and Classification, vol. 5 (4), pp. 281-300, <doi:10.1007/s11634-011-0095-6>

- Schmutz A, Jacques J, Bouveyron C, et al (2020) Clustering multivariate functional data in group-specific functional subspaces. Comput Stat 35:1101-1131

- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of \(t\) distributions. Advances in Data Analysis and Classification (to appear).

See Also

plotTriangles

Examples

Run this code
# Multivariate Contaminated Triangles
conTrig <- genTriangles()
cls = conTrig$groupd
plotTriangles(conTrig)

Run the code above in your browser using DataLab