# \donttest{
set.seed(1027)
#simulataed univariate data
data = genModelFD(ncurves=300, nsplines=35, alpha=c(0.9,0.9,0.9),
eta=c(10, 7, 17))
plot(data$fd, col = data$groupd)
clm = data$groupd
model1=c("AkjBkQkDk", "AkjBQkDk", "AkBkQkDk", "ABkQkDk", "AkBQkDk", "ABQkDk")
####################classification example with predictions
training=c(1:50,101:150, 201:250)
test=c(51:100,151:200, 251:300)
known1=clm[training]
t4<-tfunHDDC(data$fd[training],K=3,threshold=0.2,init="kmeans",nb.rep=1,
dfconstr="no", dfupdate="numeric", model=model1[1],known=known1,
itermax = 10)
if (!is.null(t4$class)) {
table(clm[training], t4$class)
p1<-predict.tfunHDDC(t4,data$fd[test] )
if (!is.null(p1$class)) table(clm[test], p1$class)
}
###########################NOX data
data1=fitNOxBenchmark(15)
plotNOx(data1)
###example for prediction
training=c(1:50)
test=c(51:115)
known1=data1$groupd[training]
t1<-tfunHDDC(data1$fd[training],K=2,threshold=0.6,init="kmeans",nb.rep=10,
dfconstr="no", model=c("AkjBkQkDk", "AkjBQkDk", "AkBkQkDk",
"ABkQkDk", "AkBQkDk", "ABQkDk"),known=known1)
if (!is.null(t1$class)) {
table(data1$groupd[training], t1$class)
p1<-predict.tfunHDDC(t1,data1$fd[test] )
if (!is.null(p1$class)) table(data1$groupd[test], p1$class)
}
# }
Run the code above in your browser using DataLab