powered by
Calculate the cumulative distribution at a given value using the TLCAR distribution.
cTLCAR(x, alpha, a, b, theta, m)
Cumulative distribution at the given value.
Value at which to calculate the CDF.
Parameter representing the distribution of the Topp-Leone component.
Parameter representing the scale (a) of the Cauchy component.
Parameter representing the position (b) of the Cauchy component.
Parameter representing the scale of the Rayleigh component.
Additional parameter.
The cumulative distribution function (CDF) for the TLCAR distribution is defined as follows:
$$F(x)=\left[ 1-\left(\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right)^2\right]^\alpha$$
cTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
Run the code above in your browser using DataLab