analyzeTPPCCR(configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN", ""), qualColName = "qupm", normalize = TRUE, ggplotTheme = tppDefaultTheme(), nCores = "max", nonZeroCols = "qssm", r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), plotCurves = TRUE, verbose = FALSE, xlsxExport = TRUE, fcTolerance = 0.1) details for instructions how to create this object.configTable argument.fcStr 
will be regarded as containing fold change values.na.strings in function read.delim.resultPath argument.tppccrImport function. tppccrNormalize function.
  To perform normalization, set argument normalize=TRUE. tppccrCurveFit 
  function. tppExport 
  function.   
  The default settings are tailored towards the output of the python package 
  isobarQuant, but can be customised to your own dataset by the arguments 
  idVar, fcStr, naStrs, qualColName.
  
  If resultPath is not specified, result files are stored at the path 
  defined in the first entry of configTable$Path. If the input data are not 
  specified in configTable, no result path will be set. This means 
  that no output files or dose response curve plots are produced and 
  analyzeTPPCCR just returns the results as a data frame.
  
  The function analyzeTPPCCR reports intermediate results to the 
  command line. To suppress this, use suppressMessages.
  
The dose response curve plots will be stored in a subfolder with 
  name DoseResponse_Curves at the location specified by 
  resultPath.
  
Only proteins with fold changes bigger than
[fcCutoff * (1 - fcTolerance) or smaller than 
1/(fcCutoff * (1 - fcTolerance))] will be used for curve fitting.
Additionally, the proteins fulfilling the fcCutoff criterion without 
tolerance will be marked in the output column meets_FC_requirement.
data(hdacCCR_smallExample)
tppccrResults <- analyzeTPPCCR(configTable=hdacCCR_config, 
                               data=hdacCCR_data, nCores=1)
  
Run the code above in your browser using DataLab