analyzeTPPTR(configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", ciStr = NULL, naStrs = c("NA", "n/d", "NaN", ""), qualColName = "qupm", normalize = TRUE, normReqs = tpptrDefaultNormReqs(), ggplotTheme = tppDefaultTheme(), nCores = "max", startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 500, plotCurves = TRUE, fixedReference = NULL, pValMethod = "maxQuant", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300), verbose = FALSE, xlsxExport = TRUE) details for instructions how to create this object.configTable argument.fcStr 
will be regarded as containing fold change values.na.strings in function read.delim.nls for curve fitting.openxlsx and a zip application to be 
installed).tpptrImport function. tpptrNormalize function. To perform normalization, 
  set argument normalize=TRUE. The normalization will be filtered 
  according to the criteria specified in the normReqs argument (also 
  see the documentation of tpptrNormalize and 
  tpptrDefaultNormReqs for further information). tpptrCurveFit. tpptrAnalyzeMeltingCurves. 
  tppExport.   
  The default settings are tailored towards the output of the python package 
  isobarQuant, but can be customised to your own dataset by the arguments 
  idVar, fcStr, naStrs, qualColName.
  
  If resultPath is not specified, the location of the first input file
  specified in configTable will be used. If the input data are not 
  specified in configTable, no result path will be set. This means 
  that no output files or melting curve plots are produced and 
  analyzeTPPTR just returns the results as a data frame.
  
  The function analyzeTPPTR reports intermediate results to the 
  command line. To suppress this, use suppressMessages.
  
  The configTable argument is a dataframe, or the path to a 
  spreadsheet (tab-delimited text-file or xlsx format). Information about 
  each experiment is stored row-wise. It contains the following columns: 
  
Path:location of each datafile. Alternatively, 
  data can be directly handed over by the data argument. 
  Experiment: unique experiment names. 
  Condition: experimental conditions of each dataset. 
    
  The argument nCores could be either 'max' (use all available cores) 
  or an upper limit of CPUs to be used.
  
  The melting curve plots will be stored in a subfolder with name 
  Melting_Curves at the location specified by resultPath.
  
  If the melting curve fitting procedure does not converge, it will be 
  repeatedly started from perturbed starting parameters (maximum iterations 
  defined by argument maxAttempts).
data(hdacTR_smallExample)
tpptrResults <- analyzeTPPTR(configTable=hdacTR_config, data=hdacTR_data, nCores=1)
Run the code above in your browser using DataLab