Learn Data & AI Skills | 50% off
Get 50% off unlimited learning

TPXG (version 1.0)

Maximum Likelihood Estimation of TPXG Regression Coefficients: Estimation of log-link TPXG regression coefficients.

Description

This function estimates the Two Parameter Xgamma regression coefficients as well as the α parameter of the Two Parameter Xgamma distribution using the maximum likelihood method.

Usage

tpxg.reg(y,x)

Value

A named list containing α parameter, a vector containing the β coefficients and the maximum likelihood value.

Arguments

y

A numeric vector containg strictly positive values.

x

A matrix or a data.frame with the predictor variables.

Author

Nikolaos Kontemeniotis.

R implementation and documentation: Nikolaos Kontemeniotis kontemeniotisn@gmail.com and Michail Tsagris mtsagris@uoc.gr.

Details

This implementation employs a logarithmic link function to relate the θ parameter of the Two-Parameter Xgamma distribution to the predictor variables. Specifically, the relationship is defined as: θ=eXβ where X is a matrix whose columns represent the predictor variables, and β is a column vector of corresponding regression coefficients.

References

"Sen, S., Chandra, N. and Maiti, S. S. (2018). On properties and applications of a two-parameter XGamma distribution. Journal of Statistical Theory and Applications, 17(4): 674--685."

See Also

tpxg.mle

Examples

Run this code
x <- matrix( rnorm(100 * 2), ncol = 2 )
y <- rtpxg(100)
tpxg.reg(y, x)

Run the code above in your browser using DataLab