Learn R Programming

TPmsm (version 1.1.0)

lines.TPmsm: lines method for a TPmsm object

Description

lines method for an object of class 'TPmsm'.

Usage

## S3 method for class 'TPmsm':
lines(x, tr.choice, col, lty, conf.int=FALSE, ci.col, ci.lty,
legend=FALSE, legend.pos, curvlab, legend.bty="n", ...)

Arguments

x
An object of class 'TPmsm'.
tr.choice
Character vector of the form 'c("from to", "from to")' specifying which transitions should be plotted. Default, all the transition probabilities are plotted.
col
Vector of colour. Default is black.
lty
Vector of line type. Default is 1:number of transitions.
conf.int
Logical. Whether to display pointwise confidence bands. Default is FALSE.
ci.col
Colour of the confidence bands. Default is col.
ci.lty
Line type of the confidence bands. Default is 3.
legend
A logical specifying if a legend should be added.
legend.pos
A vector giving the legend's position. See legend for further details.
curvlab
A character or expression vector to appear in the legend. Default is the name of the transitions.
legend.bty
Box type for the legend. By default no box is drawn.
...
Further arguments for lines.

Value

  • No value is returned.

encoding

UTF-8

See Also

legend, lines, plot.default, plot.TPmsm.

Examples

Run this code
# set the number of threads
nth <- threadsTP(2)

# Create survTP object
data(bladderTP)
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) )

# Compute transition probabilities without confidence band
KMW <- transKMW(object=bladderTP_obj, s=5, t=59, conf=FALSE, method.est=1)
KMPW <- transKMPW(object=bladderTP_obj, s=5, t=59, conf=FALSE, method.est=1)
AJ <- transAJ(object=bladderTP_obj, s=5, t=59, conf=FALSE)
PAJ <- transPAJ(object=bladderTP_obj, s=5, t=59, conf=FALSE)
LIN <- transLIN(object=bladderTP_obj, s=5, t=59, conf=FALSE)
LS <- transLS(object=bladderTP_obj, s=5, t=59, h=c(0.25, 2.5),
nh=25, ncv=50, conf=FALSE)

# Plot '1 2' KMW transition probability estimate
par( mfrow=c(1, 1) )
plot(KMW, tr.choice="1 2", ylab="P12(5, Time)", xlab="Time",
col=1, lty=1, legend=FALSE)

# Add other '1 2' transition probability estimates
lines(KMPW, tr.choice="1 2", col=2, lty=1)
lines(AJ, tr.choice="1 2", col=3, lty=1)
lines(PAJ, tr.choice="1 2", col=4, lty=1)
lines(LIN, tr.choice="1 2", col=5, lty=1)
lines(LS, tr.choice="1 2", col=6, lty=1)

# Add legend
legend(x="topleft", legend=c("KMW", "KMPW", "AJ", "PAJ", "LIN", "LS"),
col=1:6, lty=1, bty="n")

# Plot all the transitions
tr.choice <- colnames(KMW$est)
par.orig <- par( c("mfrow", "cex") )
par( mfrow=c(2, 3) )
for ( i in seq_len( length(tr.choice) ) ) {
	plot(KMW, tr.choice=tr.choice[i], col=1, lty=1, legend=FALSE,
	main=tr.choice[i], xlab="", ylab="")
	lines(KMPW, tr.choice=tr.choice[i], col=2, lty=1)
	lines(AJ, tr.choice=tr.choice[i], col=3, lty=1)
	lines(PAJ, tr.choice=tr.choice[i], col=4, lty=1)
	lines(LIN, tr.choice=tr.choice[i], col=5, lty=1)
	lines(LS, tr.choice=tr.choice[i], col=6, lty=1)
}
plot.new()
legend(x="center", legend=c("KMW", "KMPW", "AJ", "PAJ", "LIN", "LS"),
col=1:6, lty=1, bty="n", cex=1.5)
par(mfrow=c(1, 1), cex=1.2)
title(xlab="Time", ylab="Transition probability", line=3)
par(par.orig)

# restore the number of threads
threadsTP(nth)

Run the code above in your browser using DataLab