Learn R Programming

TPmsm (version 1.2.0)

dgpTP: Generates bivariate survival data

Description

Generates bivariate censored gap times from some known copula functions.

Usage

dgpTP(n, corr, dist, dist.par, model.cens, cens.par, state2.prob)

Arguments

n
Sample size.
corr
Correlation parameter. Possible values for the bivariate exponential distribution are between -1 and 1 (0 for independency). Any value between 0 (not included) and 1 (1 for independency) is accepted for the bivariate Weibull distribution.
dist
Distribution. Possible bivariate distributions are exponential and weibull.
dist.par
Vector of parameters for the allowed distributions. Two (scale) parameters for the bivariate exponential distribution and four (2 location parameters and 2 scale parameters) for the bivariate Weibull distribution. See details below.
model.cens
Model for censorship. Possible values are uniform and exponential.
cens.par
Parameter for the censorship distribution. For censure model equal to exponential the argument cens.par must be greater than 0. For censure model equal to uniform the argument must be greater or equal tha
state2.prob
The proportion of individuals that enter state 2.

Value

  • An object of class survTP.

encoding

UTF-8

Details

The bivariate exponential distribution, also known as Farlie-Gumbel-Morgenstern distribution is given by $$F(x,y)=F_1(x)F_2(y)[1+\alpha(1-F_1(x))(1-F_2(y))]$$ for $x\ge0$ and $y\ge0$. Where the marginal distribution functions $F_1$ and $F_2$ are exponential with scale parameters $\theta_1$ and $\theta_2$ and correlation parameter $\alpha$, $-1 \le \alpha \le 1$. The bivariate Weibull distribution with two-parameter marginal distributions. It's survival function is given by $$S(x,y)=P(X>x,Y>y)=e^{-[(\frac{x}{\theta_1})^\frac{\beta_1}{\delta}+(\frac{y}{\theta_2})^\frac{\beta_2}{\delta}]^\delta}$$

Where $0 < \delta \le 1$ and each marginal distribution has shape parameter $\beta_i$ and a scale parameter $\theta_i$, $i = 1, 2$.

References

Devroye L. (1986) Non-Uniform Random Variate Generation New-York: Springer-Verlag.

Johnson N., Kotz S. (1972) Distributions in statistics: continuous multivariate distributions John Wiley and Sons.

Lu J., Bhattacharya G. (1990) Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics 42(3), 543--559.

Johnson M. E. (1987) Multivariate Statistical Simulation John Wiley and Sons.

See Also

corrTP.

Examples

Run this code
# Set the number of threads
nth <- setThreadsTP(2)

# Example for the bivariate Exponential distribution
dgpTP(n=100, corr=1, dist="exponential", dist.par=c(1, 1),
model.cens="uniform", cens.par=3, state2.prob=0.5)

# Example for the bivariate Weibull distribution
dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6)

# Restore the number of threads
setThreadsTP(nth)

Run the code above in your browser using DataLab