transIPCW(object, s, t, x, bw="dpik", window="normal", method.weights="NW",
state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000, conf.level=0.95,
method.boot="percentile", method.est=1, ...)Stime will be used.FALSE.bw.x is missing or if argument object doesn't contain a covariate,
an object of class contour, image, print and plot.
NULL.x is specified and argument object contains a covariate,
an object of class print and plot.
bw="dpik" then possible options for argument window are bw is numeric then argument window accepts the same options as when bw="dpik" plus one of method.est=1 then $p_{11}(s,t|X)$, $p_{12}(s,t|X)$ and $p_{22}(s,t|X)$ are estimated according to the following expressions:
$p_{11}(s,t|X)=\frac{1-P(Z \leq t|X)}{1-P(Z \leq s|X)}$,
$p_{12}(s,t|X)=\frac{P(Z \leq t|X)-P(Z \leq s|X)-P(sMeira Machado L. F., de Uña-Álvarez J., Cadarso-Suárez C. (2006) Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal 12(3), 325--344.
Davison, A. C., Hinkley, D. V. (1997) Bootstrap Methods and their Application Chapter 5, Cambridge University Press.
transAJ,
transKMPW,
transKMW,
transLIN,
transLS,
transPAJ.# Set the number of threads
nth <- setThreadsTP(2)
# Create survTP object with age as covariate
data(heartTP)
heartTP_obj <- with(heartTP, survTP(time1, event1, Stime, event, age=age))
# Compute unconditioned transition probabilities
transIPCW(object=heartTP_obj, s=33, t=412)
# Compute unconditioned transition probabilities with confidence band
transIPCW(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="basic", method.est=2)
# Compute conditional transition probabilities
transIPCW(object=heartTP_obj, s=33, t=412, x=0)
# Compute conditional transition probabilities with confidence band
transIPCW(object=heartTP_obj, s=33, t=412, x=0, conf=TRUE, conf.level=0.95,
n.boot=100, method.boot="percentile", method.est=2)
# Restore the number of threads
setThreadsTP(nth)Run the code above in your browser using DataLab