The bivariate exponential distribution, also known as Farlie-Gumbel-Morgenstern distribution is given by
$$F(x,y)=F_1(x)F_2(y)[1+\alpha(1-F_1(x))(1-F_2(y))]$$
for \(x\ge0\) and \(y\ge0\). Where the marginal distribution functions \(F_1\) and \(F_2\) are exponential with scale parameters \(\theta_1\) and \(\theta_2\) and correlation parameter \(\alpha\), \(-1 \le \alpha \le 1\).
The bivariate Weibull distribution with two-parameter marginal distributions. It's survival function is given by
$$S(x,y)=P(X>x,Y>y)=e^{-[(\frac{x}{\theta_1})^\frac{\beta_1}{\delta}+(\frac{y}{\theta_2})^\frac{\beta_2}{\delta}]^\delta}$$
Where \(0 < \delta \le 1\) and each marginal distribution has shape parameter \(\beta_i\) and a scale parameter \(\theta_i\), \(i = 1, 2\).