data(demo.samples)
data(demo.knowns)
s <- length(labels(demo.samples))
k <- length(labels(demo.knowns))
n <- nrow(unique(demo.knowns$data[c("enzyme", "primer")]))
m <- create.diffsmatrix(demo.samples, demo.knowns)
dim(m)
identical(dim(m), c(s, k, n))
## Maximum error for each sample/known (i.e. across all enzyme/primer
## combinations), similar to how calculated by \link{TRAMP}
error <- apply(abs(m), 1:2, max, na.rm=TRUE)
dim(error)
## Euclidian error (see ?\link{TRAMP})
error.euclid <- sqrt(rowSums(m^2, TRUE, 2))/rowSums(!is.na(m), dims=2)
## Euclidian and maximum error will require different values of
## accept.error in TRAMP:
plot(error, error.euclid, pch=".")Run the code above in your browser using DataLab