# NOT RUN {
rm(list=ls())
# The dimension of response
r <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(2, 2, 2)
# The dimension of predictor
p <- 5
# The sample size
n <- 100
# Simulate the data with \code{\link{TRR_sim}}.
dat <- TRR_sim(r = r, p = p, u = u, n = n)
Xn <- dat$Xn
Yn <- dat$Yn
B <- dat$coefficients
res_std <- TRR.fit(Xn, Yn, method="standard")
res_fg <- TRR.fit(Xn, Yn, u, method="FG")
res_1D <- TRR.fit(Xn, Yn, u, method="1D")
res_pls <- TRR.fit(Xn, Yn, u, method="PLS")
res_ECD <- TRR.fit(Xn, Yn, u, method="ECD")
rTensor::fnorm(B-stats::coef(res_std))
rTensor::fnorm(B-stats::coef(res_fg))
rTensor::fnorm(B-stats::coef(res_1D))
rTensor::fnorm(B-stats::coef(res_pls))
rTensor::fnorm(B-stats::coef(res_ECD))
## Use dataset bat
data("bat")
Xn <- bat$Xn
Yn <- bat$Yn
res_std <- TRR.fit(Xn, Yn, method="standard")
# }
Run the code above in your browser using DataLab