Learn R Programming

TRONCO (version 2.4.2)

tronco.kfold.posterr: tronco.kfold.posterr

Description

Perform a k-fold cross-validation using the function bn.cv and scan every node to estimate its posterior classification error.

Usage

tronco.kfold.posterr(x, models = names(as.models(x)), events = as.events(x), runs = 10, k = 10, cores.ratio = 1, silent = FALSE)

Arguments

x
A reconstructed model (the output of tronco.capri)
models
The names of the selected regularizers (bic, aic or caprese)
events
a list of event
runs
a positive integer number, the number of times cross-validation will be run
k
a positive integer number, the number of groups into which the data will be split
cores.ratio
Percentage of cores to use. coresRate * (numCores - 1)
silent
A parameter to disable/enable verbose messages.

Examples

Run this code
data(test_model)
tronco.kfold.posterr(test_model, k = 2, runs = 2)

Run the code above in your browser using DataLab