TSQCA
TSQCA is an R package implementing Threshold-Sweep QCA (TS-QCA),
a framework for systematically varying the thresholds used to binarize
the outcome and conditions in crisp-set QCA.
After calibration, QCA results may change depending on how thresholds are set.
TS-QCA evaluates this sensitivity by automatically:
- binarizing the data using many threshold candidates
- generating truth tables
- applying
QCA::minimize() - extracting the solution, consistency, and coverage
Implemented sweep types:
- CTS-QCA (ctSweepS): Sweep the threshold of one X
- MCTS-QCA (ctSweepM): Sweep thresholds of multiple X conditions
- OTS-QCA (otSweep): Sweep the threshold of Y only
- DTS-QCA (dtSweep): Sweep X and Y thresholds simultaneously (2D sweep)
Scope: TSQCA focuses on sufficiency analysis. Necessity analysis is planned for future versions.
Features
Multiple Solution Detection
QCA minimization can produce multiple equivalent intermediate solutions. TSQCA detects and reports these cases, allowing researchers to identify robust essential prime implicants versus solution-specific selective prime implicants.
Use the extract_mode parameter to control output:
| Mode | Description | Use Case |
|---|---|---|
"first" | Returns only the first solution (M1) | Default, backward compatible |
"all" | Returns all solutions concatenated | See all equivalent solutions |
"essential" | Returns essential prime implicants common to all solutions | Identify robust findings |
# Detect and show all solutions
result <- otSweep(
dat = mydata,
outcome = "Y",
conditions = c("X1", "X2", "X3"),
sweep_range = 6:8,
thrX = c(X1 = 7, X2 = 7, X3 = 7),
extract_mode = "all" # Show all solutions
)
# Extract essential prime implicants only
result_essential <- otSweep(
dat = mydata,
outcome = "Y",
conditions = c("X1", "X2", "X3"),
sweep_range = 6:8,
thrX = c(X1 = 7, X2 = 7, X3 = 7),
extract_mode = "essential" # Show essential prime implicants
)Automatic Report Generation
The generate_report() function creates comprehensive markdown reports:
# Run analysis with return_details = TRUE (the default)
result <- otSweep(
dat = mydata,
outcome = "Y",
conditions = c("X1", "X2", "X3"),
sweep_range = 6:8,
thrX = c(X1 = 7, X2 = 7, X3 = 7)
)
# Generate full report
generate_report(result, "my_analysis.md", dat = mydata, format = "full")
# Generate simple report (for journal manuscripts)
generate_report(result, "my_analysis_simple.md", dat = mydata, format = "simple")Reports include:
- Analysis settings (for reproducibility)
- Solution formulas with essential/selective prime implicants
- Fit measures (consistency, coverage, PRI)
- Cross-threshold comparison tables
Configuration Charts
Configuration charts are automatically included in reports. Generate Fiss-style configuration charts (Table 5 format):
# Reports include configuration charts by default
generate_report(result, "my_report.md", dat = mydata, format = "full")
# Disable charts if needed
generate_report(result, "my_report.md", dat = mydata, include_chart = FALSE)
# Use LaTeX symbols for academic papers
generate_report(result, "my_report.md", dat = mydata, chart_symbol_set = "latex")Standalone chart functions are also available:
# From path strings
paths <- c("A*B*~C", "A*D")
chart <- config_chart_from_paths(paths)
cat(chart)Output:
| Condition | M1 | M2 |
|:--:|:--:|:--:|
| A | ● | ● |
| B | ● | |
| C | ⊗ | |
| D | | ● |Three symbol sets available: "unicode" (● / ⊗), "ascii" (O / X), "latex" ($\bullet$ / $\otimes$)
S3 Methods
All sweep functions return objects supporting S3 class methods:
print(): Display analysis overview with solution statisticssummary(): Display full results table with parameters
result <- otSweep(...)
print(result) # Quick overview
summary(result) # Full detailsNegated Outcome Support
Analyze conditions sufficient for the absence of an outcome:
# Analyze when Y is low (below threshold)
result <- otSweep(
dat = mydata,
outcome = "~Y", # Tilde prefix for negation
conditions = c("X1", "X2", "X3"),
sweep_range = 6:9,
thrX = c(X1 = 7, X2 = 7, X3 = 7)
)Terminology Note
TSQCA uses precise Boolean algebra terminology:
| Term | Meaning |
|---|---|
| Essential Prime Implicants (EPI) | Terms in ALL equivalent solutions (M1, M2...) |
| Selective Prime Implicants (SPI) | Terms in SOME solutions only |
Note: This is distinct from Fiss (2011) "Core Conditions" which compares parsimonious vs. intermediate solutions. See
docs/TSQCA_Terminology_Guide_EN.mdfor details.
Installation
install.packages("devtools")
devtools::install_github("im-research-yt/TSQCA")Relationship with QCA Package
TSQCA is built on top of the QCA package (Duşa, 2019). All function arguments follow QCA conventions:
incl.cut,n.cut,pri.cut→ SeeQCA::truthTable()- Consistency, frequency, and PRI cutoffs for truth table construction
include,dir.exp→ SeeQCA::minimize()- Inclusion rule and directional expectations for logical minimization
Why This Matters
- Familiar Workflow: If you know QCA, you already know TSQCA's parameters
- Detailed Documentation: For in-depth parameter explanations, refer to QCA package documentation
- Seamless Integration: TSQCA extends QCA without replacing it
Quick Reference
# Check QCA parameter documentation
?QCA::truthTable # For incl.cut, n.cut, pri.cut
?QCA::minimize # For include, dir.exp
# TSQCA uses these same parameters
result <- dtSweep(
dat = sample_data,
outcome = "Y",
conditions = c("X1", "X2"),
sweep_list_X = list(X1 = 6:7, X2 = 6:7),
sweep_range_Y = 6:7,
incl.cut = 0.8, # QCA parameter
n.cut = 1, # QCA parameter
pri.cut = 0 # QCA parameter
)Basic Setup
library(QCA)
library(TSQCA)
dat <- read.csv("sample_data.csv", fileEncoding = "UTF-8")
outcome <- "Y"
conditions <- c("X1", "X2", "X3")
str(dat)Working with Mixed Data Types
Handling Binary Variables (0/1)
When your dataset contains both continuous and binary (0/1) variables, special attention is needed:
- Do NOT use threshold sweep for binary variables — they are already binarized
- Specify threshold = 1 for binary variables to preserve their original values
- Explicitly define thresholds for each variable in
sweep_list
Why Threshold = 1 for Binary Variables?
The qca_bin() function uses x >= thr for binarization:
- If
x = 0:0 >= 1→ FALSE → 0 (preserved) - If
x = 1:1 >= 1→ TRUE → 1 (preserved)
Example: Mixed Data
# Suppose X1 is binary (0/1), while X2 and X3 are continuous (0-10)
sweep_list <- list(
X1 = 1, # Binary variable: use threshold 1 to preserve values
X2 = 6:8, # Continuous: sweep thresholds
X3 = 6:8 # Continuous: sweep thresholds
)
res_mcts <- ctSweepM(
dat = dat,
outcome = "Y",
conditions = c("X1", "X2", "X3"),
sweep_list = sweep_list,
thrY = 7
)This explores 1 × 3 × 3 = 9 threshold combinations, treating X1 as a fixed binary condition.
Common Mistake
# WRONG: Using sweep range for binary variables
sweep_list <- list(
X1 = 6:8, # All values become 0 (since 0 < 6 and 1 < 6)
X2 = 6:8,
X3 = 6:8
)Best Practice: Always specify thresholds explicitly for each variable based on its data type.
Usage Examples
1. CTS-QCA: single-condition X sweep (ctSweepS)
sweep_var <- "X3" # Condition (X) whose threshold will be varied
sweep_range <- 6:9 # Candidate threshold values
thrY <- 7 # Fixed threshold for Y
thrX_default <- 7 # Fixed thresholds for other X's
res_cts <- ctSweepS(
dat = dat,
outcome = outcome,
conditions = conditions,
sweep_var = sweep_var, # X to sweep
sweep_range = sweep_range, # Threshold candidates for X
thrY = thrY, # Fixed Y threshold
thrX_default = thrX_default # Fixed thresholds for other X's
)
summary(res_cts)2. MCTS-QCA: multi-condition X sweep (ctSweepM)
# Threshold candidates for each X
sweep_list <- list(
X1 = 6:7,
X2 = 6:7,
X3 = 6:7
)
res_mcts <- ctSweepM(
dat = dat,
outcome = outcome,
conditions = conditions,
sweep_list = sweep_list, # Threshold candidates for each X
thrY = 7 # Fixed Y threshold
)
summary(res_mcts)3. OTS-QCA: outcome Y sweep (otSweep)
thrX <- c(X1 = 7, X2 = 7, X3 = 7) # Fixed thresholds for X
sweep_range_Y <- 6:8 # Candidate thresholds for Y
res_ots <- otSweep(
dat = dat,
outcome = outcome,
conditions = conditions,
sweep_range = sweep_range_Y, # Y threshold candidates
thrX = thrX # Fixed X thresholds
)
summary(res_ots)
# Generate report for detailed analysis
generate_report(res_ots, "ots_report.md", dat = dat, format = "full")4. DTS-QCA: 2D sweep of X and Y (dtSweep)
# X-side threshold candidates (multiple conditions)
sweep_list_X <- list(
X1 = 6:7,
X2 = 6:7,
X3 = 6:7
)
# Y-side threshold candidates
sweep_range_Y <- 6:7
res_dts <- dtSweep(
dat = dat,
outcome = outcome,
conditions = conditions,
sweep_list_X = sweep_list_X, # X threshold candidates
sweep_range_Y = sweep_range_Y # Y threshold candidates
)
summary(res_dts)Sample Data
data(sample_data)
str(sample_data)References
Core QCA Methodology
- Ragin, C. C. (2008). Redesigning Social Inquiry: Fuzzy Sets and Beyond. University of Chicago Press. DOI: 10.7208/chicago/9780226702797.001.0001
- Schneider, C. Q., & Wagemann, C. (2012). Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis. Cambridge University Press. DOI: 10.1017/CBO9781139004244
QCA R Package
- Duşa, A. (2019). QCA with R: A Comprehensive Resource. Springer. DOI: 10.1007/978-3-319-75668-4
- Duşa, A. (2018). Consistency Cubes: A Fast, Efficient Method for Exact Boolean Minimization. The R Journal, 10(2), 357–370. DOI: 10.32614/RJ-2018-080
- Duşa, A. (2024). QCA: Qualitative Comparative Analysis. R package version 3.22. https://CRAN.R-project.org/package=QCA
Robustness and Threshold Sensitivity
- Oana, I.-E., & Schneider, C. Q. (2024). A Robustness Test Protocol for Applied QCA: Theory and R Software Application. Sociological Methods & Research, 53(1), 57–88. DOI: 10.1177/00491241211036158
- Oana, I.-E., & Schneider, C. Q. (2018). SetMethods: An Add-on R Package for Advanced QCA. The R Journal, 10(1), 507–533. DOI: 10.32614/RJ-2018-031
- Skaaning, S.-E. (2011). Assessing the Robustness of Crisp-Set and Fuzzy-Set QCA Results. Sociological Methods & Research, 40(2), 391–408. DOI: 10.1177/0049124111404818
- Thiem, A., Spöhel, R., & Duşa, A. (2016). Enhancing Sensitivity Diagnostics for Qualitative Comparative Analysis: A Combinatorial Approach. Political Analysis, 24(1), 104–120. DOI: 10.1093/pan/mpv028
Acknowledgements
This package implements methods developed in research supported by JSPS KAKENHI Grant Number JP20K01998.
License
MIT License.