# klinfo

0th

Percentile

##### Kullback-Leibler Information

Computes Kullback-Leibler information.

Keywords
ts
##### Usage
klinfo(distg = 1, paramg = c(0, 1), distf = 1, paramf, xmax = 10)
##### Arguments
distg

function for the true density (1 or 2).

 1 : Gaussian (normal) distribution paramg(1): mean paramg(2): variance 2 : Cauchy distribution paramg(1): $\mu$ (location parameter)

paramg

parameter vector of true density.

distf

function for the model density (1 or 2).

 1 : Gaussian (normal) distribution paramf(1): mean paramf(2): variance 2 : Cauchy distribution paramf(1): $\mu$ (location parameter)

paramf

parameter vector of the model density.

xmax

upper limit of integration. lower limit xmin = -xmax.

##### Value

nint

number of function evaluation.

dx

delta.

KLI

Kullback-Leibler information, $I(g;f)$.

gint

integration of $g(y)$ over [-xmax, xmax].

##### References

Kitagawa, G. (2010) Introduction to Time Series Modeling. Chapman & Hall/CRC.

• klinfo
##### Examples
# NOT RUN {
# g:Gauss, f:Gauss
klinfo(distg = 1, paramg = c(0, 1), distf = 1, paramf = c(0.1, 1.5), xmax = 8)

# g:Gauss, f:Cauchy
klinfo(distg = 1, paramg = c(0, 1), distf = 2, paramf = c(0, 1), xmax = 8)
# }

Documentation reproduced from package TSSS, version 1.2.3, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.