powered by
Estimate the trend using the AIC best polynomial regression model.
polreg(y, order, plot = TRUE, ...)
An object of class "polreg", which is a list with the following components:
"polreg"
MAICE (minimum AIC estimate) order.
residual variance of the model with order \(M\). (\(0 \leq M \leq\) order)
order
AIC of the model with order \(M\). (\(0 \leq M \leq\) order)
AIC - minimum AIC.
regression coefficients \(A(I,M)\) with order \(M\).
(\(1 \leq M \leq\) order, \(1 \leq I \leq M\))
trend component.
a univariate time series.
maximum order of polynomial regression.
logical. If TRUE (default), original data and trend component are plotted.
TRUE
graphical arguments passed to plot.polreg.
plot.polreg
Kitagawa, G. (2020) Introduction to Time Series Modeling with Applications in R. Chapman & Hall/CRC.
# The daily maximum temperatures for Tokyo data(Temperature) polreg(Temperature, order = 7) # Wholesale hardware data data(WHARD) y <- log10(WHARD) polreg(y, order = 15)
Run the code above in your browser using DataLab